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ABSTRACT 

 

 

 

THE ROLE OF P2X RECEPTORS IN HIV AND OPIATE-RELATED NEUROTOXICITY 

By: Mary E. Sorrell Ph.D. 
 

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy at Virginia Commonwealth University.  
 
Virginia Commonwealth University, 2014 
Major Director: Kurt F. Hauser, Professor, Pharmacology and Toxicology  
 
 
 
Emerging evidence suggests that opioid drugs can exacerbate neuroAIDS. Microglia are the 

principal neuroimmune effectors thought to be responsible for neuron damage in HIV-infected 

individuals, and evidence suggests that drugs acting via opioid receptors in microglia aggravate 

the neuropathophysiological effects of HIV. The P2X family of ATP activated ligand-gated ion 

channels regulates key aspects of microglial function. In addition, opioid-dependent microglial 

activation has been reported to be mediated through P2X4 signaling, prompting us to investigate 

P2X receptors contribution to the neurotoxic effects of HIV and morphine. In vitro experiments 

showed treatment with TNP-ATP prevented the neurotoxic effects of morphine and/or HIV Tat, 

or ATP alone in a concentration dependent manner. This evidence suggests P2X receptors 

mediate the neurotoxic effects of these insults in striatal neurons.  P2X1, P2X3, and P2X7 

selective receptor antagonists did not prevent Tat- and/or morphine-induced 
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neurotoxicity, implying cellular pathways activated may not involve these subtypes. Cells from 

P2X4KO mice show that activation of the P2X4 receptor on glia are necessary to cause Tat and/or 

morphine toxicity.  However, data implied that baseline neuronal function may be altered due to 

lack of P2X4 receptor expression, and also gave evidence for altered Tat and morphine cellular 

signaling when the two are given in combination versus alone.  Surgeries were performed on 

P2X4 KO and WT mice, which received intrastriatal Tat injections and morphine and/or 

naltrexone pellets.  WT mice showed significant increases in inflammatory markers when treated 

with Tat and/or morphine.  Increases in inflammatory markers were not seen in P2X4 KO mice, 

implying P2X4 receptors play a role in neuroinflammation resulting from Tat and/or 

morphine.  Finally, human tissue samples from the National NeuroAIDS Tissue Consortium 

were analyzed. Changes in P2X5 and P2X7 mRNA were found in microarray data, but only 

changes in P2X7 mRNA levels were confirmed by RT-PCR. No changes in P2X4 mRNA levels 

were detected. Our experiments indicate the P2X receptor family contributes to Tat- and 

morphine- related neuronal injury, and reveal that members of the P2X receptor family, 

especially P2X4, may be novel therapeutic targets for restricting the synaptodendritic injury and 

neurodegeneration that accompany neuroAIDS and opiate abuse.
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CHAPTER 1: Introduction 

 

HIV 

Human immunodeficiency virus or HIV is a member of the lentivirus genus, which is in 

the retroviridae family. It is also the virus that is known to be the causative agent of acquired 

immunodeficiency syndrome or AIDS.  HIV-1 is the most common subtype of HIV around the 

globe except in some specific regions of Africa, which have a higher prevalence of HIV-2.  As 

such, I will only be referring to the HIV-1 strain throughout the document.  HIV-1 variants are 

classified into four groups: Group M for major, Group O for outlier, and two new groups, Group 

N and Group P.  Group M also consists of at least nine genetically distinct subtypes, or clades, 

referred to as A, B, C, D, F, G, H, J and K (Hemelaar et al., 2011).  It is important to remember 

that genetically different hybrid viruses can be made from two different subtypes meeting in an 

infected individual.  This new hybrid virus can then infect other individuals providing a 

mechanism for new strains of virus to evolve, thus the number of groups and clades can change 

often (Spira et al., 2003; Taylor et al., 2008). 

The HIV virion consists of a circular lipid bilayer that contains viral RNA and necessary 

enzymes (Fig. 1).  Retroviruses are equipped with a unique enzyme, reverse transcriptase, which 

has the ability to change viral RNA into DNA once the virus has entered the host cell. Viral 

DNA is then translocated to the nucleus of the cell and can be integrated into the cellular genome.  

At this point viral and cellular proteins work together in order to express viral RNA that can 

either be made into viral proteins or new genomic RNA that can be assembled to make new viral 

particles (Fig. 2) (Barré-Sinoussi, 1996).  
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Figure 1.  The HIV virion.  The viral envelope consists of a lipid bilayer membrane (derived 
from the host cell) and envelope protein complexes (gp120 + gp41) that will help facilitate viral 
entry.  Inside the viral envelop is the viral capsid that contains two single stranded RNA 
genomes and three viral enzymes (protease, reverse transcriptase, and integrase) (Barré-Sinoussi, 
1996). 
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Figure 2.  The HIV life cycle. HIV virions first enter the host cell.  Envelope proteins mediate 
fusion of the viral lipid envelope with the cellular membrane. After entering the cytoplasm, 
reverse transcription occurs.  Viral DNA can now be integrated into the host genome. Production 
of new virus particles is initiated by the transcription of new viral RNAs.  The envelope 
glycoproteins are synthesized as a precursor protein in the endoplasmic reticulum/Golgi 
compartments and processed by a cellular protease. Assembly of new virions occurs at the 
plasma membrane immediately before release of new virions (Barré-Sinoussi, 1996). 
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Figure 3. A simplified HIV gene map. The HIV provirus is known to encode for at least 9 
different proteins. These proteins can be divided into three classes based on function: structural 
(Gag, Pol and Env), regulatory (Tat and Rev), and accessory (Vpu, Vpr, Vif and Nef) (Ellis et al., 
2007).   
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HIV in the CNS 

Although HIV does not directly infect neurons in the central nervous system (CNS), the 

virus can infect other types of CNS cells that then indirectly lead to neuronal dysfunction.  The 

main cell types infected by HIV in the CNS are microglia and perivascular macrophages.  

Microglia and perivascular macrophages are the immune cells of the brain, and are believed to 

originate from monocytes.   Monocytes can enter the brain during embryogenesis, and then 

differentiate based on cues in the surrounding microenvironment (Jordan and Thomas, 1988; 

Guillemin and Brew, 2004).  

Perivascular macrophages are located close to endothelial cells and the peripheral 

circulation.  These cells are thought to be involved in initial CNS infection that can then infect 

resident microglia.   Microglia can exist in one of two states: ramified or resting, and ameboid or 

activated.  Ameboid microglia often have a spherical morphology and lack processes.  They can 

travel long distances, and are capable of replication and phagocytosis.  Ramified microglia have 

extended processes that constantly survey their surroundings.  Microglia can also exist in other 

states, but these usually only occur in response to a disease state.  One example is the 

multinucleated giant cell, which can occur in the CNS due to HIV infection (Boche et al., 2013).   

HIV infection can cause microglia to transform from resting to activated states.  Once in 

an activated state, microglia can have phenotypic differences based on the specific stimulus in 

which they are responding.  This is similar to the different activation states in peripheral 

macrophages, M1 and M2, where response also differs based on what stimulus is present.  

However, regulation of active states in microglia has not been as well characterized (Boche et al., 

2013; Schwartz et al., 2013).  In the case of HIV infection, microglial activation leads to 
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cytokine and chemokine release that then activates molecular pathways in neighboring microglia 

as well as in nearby astrocytes and neurons, which can lead to neuronal injury and death.  Also, 

HIV proteins from infected microglia can be released into the intracellular space and directly 

activate neurotoxic pathways.   

HIV can also infect astrocytes, although only about 5% have been shown to exhibit 

infection (Eugenin and Berman, 2007).  Astrocytes make up about 70 % of the brain and 

contribute to maintaining neuron homeostasis by buffering extracellular glutamate levels, 

regulating neurotransmitter concentrations, releasing proinflammatory molecules, contribute to 

the integrity of BBB, and perform other supportive functions. As such, astrocyte dysfunction in 

even a small population may lead to abnormal neuron signaling and function (Eugenin and 

Berman, 2007; Eugenin et al., 2011).  Astrocytes usually only have productive infection that 

occurs for a brief period after which they become latently infected (Brack-Werner et al., 1992; 

Nath et al., 1995; Eugenin and Berman, 2007; Eugenin et al., 2011).  However, the ability of 

astrocytes to host productive viral infection may be restored by the presence of inflammatory 

molecules (Carroll-Anzinger and Al-Harthi, 2006).  Latent viral infection is where the cell is still 

infected but new virus is no longer being made.  This allows for astrocytes to behave as HIV 

reservoirs and may partially explain why CNS complications still exist even after the advent of 

highly active antiretroviral therapies (HAART).   

The HIV virus is not thought to infect neurons or oligodendrocytes. While, the infection 

of oligodendrocytes by the HIV virus is somewhat controversial, there is no clear evidence to 

support that it occurs (Kramer-Hämmerle et al., 2005). Therefore, the main cells that are thought 

to be responsible for neuronal toxicity are the infected microglia cells that release both viral and 

cellular toxins, which then affect the function of nearby astrocytes and neurons.  
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Initial HIV infiltration into the CNS is thought to occur soon after infection (Annunziata, 

2003).  The most accepted theory of HIV infiltration into the CNS is the Trojan horse hypothesis 

(Georgsson, 1994; Liu et al., 2000), where infected perivascular macrophages are able to cross 

the blood to brain barrier and then infect microglia in the CNS (Figure 4).  At this point, infected 

microglia may release inflammatory molecules affecting nearby cells or produce more virus that 

can then infect other microglial cells thereby spreading the virus and creating bystander damage.  

Inflammatory molecules can affect neighboring microglia as well as astrocytes.  Astrocytes can 

also become activated in response to these inflammatory compounds and produce their own 

inflammatory products (El-Hage et al., 2006), as well as have a decreased ability to provide 

metabolic and trophic support to the neuron.  Between indirect toxicity mediated by other neural 

cell types and direct insults to the neuron via release of proinflammatory molecules and viral 

proteins, neuronal damage and loss often occur due to HIV infection in the CNS (Fig. 4).   
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Figure 4.  HIV Interactions in the CNS (the Trojan Horse hypothesis).  HIV infected 
macrophages are able to carry the virus across the blood to brain to barrier.  These cells can then 
infect resident microglia in the CNS.  Infected macrophages and microglia will then release virus 
as well other cytotoxic molecules including both viral and cellular proteins.  The cytotoxic 
proteins can then affect neighboring neural cells. Cytotoxic insult to neighboring astrocytes leads 
to astrogliosis that can cause further release of proinflammatory molecules as well as cause a 
decrease in the ability of the astrocyte to give metabolic and trophic support to the neuron. 
Finally the cytotoxic proteins released from the microglia or astrocytes can directly interact with 
the neuron to activate cellular pathways.  Overall this inflammatory environment leads to 
neuronal dysfunction and death (modified from Hauser et al., 2005).      
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HIV Associated Neurocognitive Disorders (HAND) 

The above cellular mechanisms eventually lead to HIV associated neurocognitive 

disorders, or HAND.  Presently, about 50% of HIV infected individuals suffer from HAND 

(Kraft-Terry et al., 2010; McArthur et al., 2010; Harezlak et al., 2011).  HAND was first 

recognized in 1981 and has evolved to be characterized by three major categories: 1) 

asymptomatic neurocognitive impairment (ANI) 2) HIV-associated mild neurocognitive disorder 

(MND) and 3) HIV associated dementia (HAD). Respectively, these disorders range from mild 

to severe neurocognitive abnormalities that are exhibited by the infected individual (Fig. 5).  

HAD, the most severe form is a subcortical dementia that causes a marked impact on daily 

activities including distinct changes in cognition (e.g., learning, memory, attention, and 

executive function), motor coordination (e.g., psychomotor slowing and hypertonia), and 

behavior (e.g., apathy, irritability, emotional lability, and affective blunting).   MND is a mild 

cognitive dysfunction that interferes with daily living to a limited extent, MND is characterized 

by mild but significant cognitive dysfunction, pronounced motor impairment and is associated 

with decreased adherence to treatment regimens, greater levels of unemployment.  Finally, ANI 

is a subclinical cognitive dysfunction that does not interfere with daily function (Heaton et al., 

1994; McArthur et al., 2005; Crossley and Brew, 2013).   

Currently there is no agreement on the exact battery of tests used to evaluate these 

disorders. However, it is recommended that the following areas of neurocognition be tested: 

verbal/language, attention/working memory, abstraction/executive function, learning/recall, 

speed of information processing, and motor skills (Clifford and Ances, 2013; Mind Exchange 

Working Group, 2013). Besides psychological testing, other endpoints associated with 

inflammation (e.g. microglia activation, cytokine levels) and cellular morphology changes (e.g. 
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decreased synaptic and dendritic densities) can be used as biomarkers and signs of HAND.  

These tend to correlate better with neurocognitive dysfunction than viral load (Wiley and Achim, 

1994; Masliah et al., 1997; Sá et al., 2004; Lyons et al., 2011; Kamat et al., 2012; Burdo et al., 

2013; Yuan et al., 2013).  
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Figure 5. Diseases encompassed by HAND. HAND is comprised of several diseases that that 
exhibit a range of symptoms from mild (ANI) to severe (HAD), with ANI characterized by 
moderate symptoms (Antinori et al., 2007). 
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NeuroAIDS in the Post- HAART Era   

 Although the incidence of neurocognitive impairment did not decrease after the advent of 

HAART, the proportion of individuals suffering from more severe symptoms decreased, while 

the number of patients experiencing minor symptoms has increased.  Although many severe 

neurological complications that were once associated with HIV associated dementia (HAD) and 

evident as HIV encephalitis (HIVE) postmortem occur less frequently, neuroinflammation and 

microglial activation are still evident but to a lesser degree (Anthony and Bell, 2008; Zhou and 

Saksena, 2013).  Another factor that may increase the incidence of HAND is that HIV infected 

individuals are living longer with HAART intervention.  

HAART therapy consists of three main classes of antiretroviral therapies: 

nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse 

transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs).  Early entry inhibitors and 

integrase inhibitors may also be used (McGee et al., 2006).  There is some evidence for HAART 

to decrease neurological complications caused by CNS infection (Kaul, 2009), however it does 

not provide complete protection against neurological symptoms (McArthur et al., 2005; Boissé et 

al., 2008; Brew et al., 2009)  Although peripheral viral loads are well controlled by HAART 

therapy, the virus may exist in higher levels in CNS due to viral reservoirs and poor HAART 

penetrability of the BBB (Jevtović et al., 2009). NRTIs tend to penetrate the CNS better than 

NNRTIs or PIs, however they are quickly transported out of the CNS via efflux transport 

mechanisms.  NNRTIs have varying abilities to penetrate the BBB, and PIs exhibit poor CNS 

penetration due to high levels of protein binding in the plasma (McGee et al., 2006). The early 

entry inhibitor, Maraviroc, and the integrase inhibitor, Raltegravir, both have moderate abilities 
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to cross the BBB (Tan and McArthur, 2012).  CNS viral reservoirs may also give rise to viral 

mutations that enhance viral drug resistance (Boissé et al., 2008).           

HIV Viral Proteins 

As shown in Figure 3, the HIV genome encodes for 9 different proteins, of these gp120, Tat, Nef, 

and Vpr can be shed and directly lead to neurotoxicity. Tat and gp120 have been primarily 

focused on in the literature (Jones and Power, 2006).  Tat is the HIV protein that will be 

investigated in the following studies. Once a cell becomes infected and provirus is present, only 

PIs are of use to combat HIV infection and these drugs act down stream of Tat production 

(Johnson et al., 2013).  Hence, Tat may have a greater potential than gp120 to participate in 

inflammatory interactions that lead to neuronal complications.  

 

HIV-1 TAT 

Tat, standing for ‘trans-activator of transcription’, is one of the first proteins produced 

after HIV integration. Tat is encoded by 2 exons. The first exon encodes amino acid 1-72, 

including a proline-rich domain, cysteine-rich domain and basic domain. Exon 2 is the RGD-

containing C-terminal domain, which can vary in length depending on the viral isolate. The full 

protein can range anywhere from 80 to 103 amino acids (Debaisieux et al., 2012).  Tat is a potent 

transactivator of HIV-1. The first 72 amino acids (Tat1-72) have full transactivating abilities. This 

cysteine-rich region is necessary for Tat to form metal-linked dimers to resist proteolytic 

digestion and is essential for Tat function (Frankel et al., 1988; Garcia et al., 1988). The basic 

domain is important for nuclear translocation (Endo et al., 1989). We used Tat1-86, in our studies. 
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It can be secreted by infected cells at significant levels into the extracellular space and remain 

intact and functional (Westendorp et al., 1995; Hudson et al., 2000). 

Other cells that are not infected by virus can still have direct contact with Tat. It can 

either be taken up into the cell (Chang et al., 1997; Liu et al., 2000) or interact with receptors on 

the cell surface (Albini et al., 1996; Ghezzi et al., 2000; Liu et al., 2000).  In neurons, Tat has 

been proposed to undergo receptor mediated endocytosis that may be mediated by direct binding 

to several proteins, including CD26 (Gutheil et al., 1994), LDR (low density lipoprotein receptor) 

(Liu et al., 2000), extracellular matrix associated heparan sulfate proteoglycans (HSPG) (Chang 

et al., 1997), and surface integrins (Barillari et al., 1993).    Tat also has the ability to activate the 

NMDA receptor (Magnuson et al., 1995; Eugenin et al., 2003; King et al., 2006a; Li et al., 2008). 

Overactivation of NMDA receptors leads to high Ca2+ levels, which can lead to cell death 

(Cheng and Reynolds, 1998; Haughey et al., 1999). The mechanism of NMDA receptor 

activation by Tat is unknown. Directly toxic pathways activated by Tat are thought to result in 

dendritic loss and cell death (Kruman et al., 1998; Bonavia et al., 2001; Haughey et al., 2001; 

Eugenin et al., 2003; Kim et al., 2008) via varying mechanisms and pathways (Singh et al., 2004; 

Kim et al., 2008).   

Tat induced changes in intracellular calcium lead to endoplasmic reticulum (ER) and 

mitochondrial stress, which then can mediate cell death pathways (Kruman et al., 1998; Haughey 

and Mattson, 2002; Caporello et al., 2006).  Mitochondria will release factors, such as 

cytochrome c, that activate caspase-mediated apoptosis. Apoptosis is programmed cell death, 

characterized by decreases in cell volume, membrane blebbing, chromatin condensation, and 

DNA fragmentation (Wyllie et al., 1980). It has also been shown that endonuclease G (endoG) 
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can also be released from mitochondria and activate apoptosis via caspase independent pathways 

(Li et al., 2001; Singh et al., 2004; Hauser et al., 2006).  

Another mechanism for Tat induced neuroinflammation and cell death is its ability to 

inhibit autophagy pathways (Zhou and Spector, 2008; Li et al., 2011; Hui et al., 2012).  

Autophagy is essential for cell homeostasis and adaptation to environmental stresses.  It plays a 

vital role in innate and adaptive immune mechanisms, including resistance to pathogen infection.  

Inhibition of autophagy can lead to increased necrosis, which would normally not occur.  This 

type of cell death is associated with cell lysis and leakage of cell contents into the extracellular 

space, which leads to local inflammation and damage to the surrounding tissue (Ryter et al., 

2014).    

Indirect neuronal toxicity is caused through the actions of Tat on astrocytes and microglia 

that in turn release cellular toxins into the environment that then lead to neuronal toxicity. 

Astrocytes with increased levels of Tat have been shown to have a decreased ability to buffer 

glutamate levels (Eugenin et al., 2003; Zhou et al., 2004) and to excrete higher levels of NO, 

which can also initiate apoptotic events (Liu et al., 2002). Astrocytes treated with Tat have also 

been shown to release CCL2 (also known as MCP-1).  CCL2 is important for the recruitment of 

monocytes to sites of inflammation and has been shown to be elevated in individuals with HAD 

(Conant et al., 1998; King et al., 2006a).   

Treatment of microglia with Tat has also been shown to cause an increase in the amount 

of NO synthesis (Polazzi et al., 1999) as well as the release of proinflammatory cytokines and 

chemokines like CCL2, CXCL8, CXCL10, CCL3, CCL4 and CCL5, IL-1β and TNF-α.  

Activation of ERK1/2 MAPK, PI3K and p38 MAPK pathways have been shown to be involved 
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(Chen et al., 1997; Mayne et al., 2000; Sheng et al., 2000; D'Aversa et al., 2004). Tat can also 

cause pertussis toxin sensitive Ca2+ fluxes in microglia which implies activation of Gi coupled 

GPCRs is occurring.  This is important because chemokine receptors are Gi coupled GPCRs, and 

activation of chemokine receptors can serve as chemoattractants to recruit other microglia 

(Albini et al., 1998). 

 

Opioid Signaling in NeuroAIDS  

Intravenous drug use and HIV are interrelated epidemics. Almost 25% of HIV cases in 

the USA in 2011 were directly related to injection drug use (Centers for Disease Control 2011). 

Opiates can also cause an increase the frequency and severity of NeuroAIDS (Arango et al., 

2004; Anthony et al., 2005; Meyer et al., 2013; Smith et al., 2014).  Heroin is one the most used 

drugs by injection drug users, with morphine being its major bioactive substrate.  When taken, 

heroin quickly undergoes deacetylation to morphine via first pass metabolism.  In the following 

studies we have chosen to use morphine to investigate HIV and opiate interactions. Please note 

that opiates are exogenous compounds that activate receptors, and opioids reference the family of 

receptors that are activated.  

 

Opiate exposure can intrinsically alter neuropathogenesis by directly affecting neuronal, 

astrocytic and microglial function (Hauser et al., 2012) and may promote the progression of HIV 

infection to AIDS (Donahoe and Vlahov, 1998; Bell et al., 2002; Kumar et al., 2004; Byrd et al., 

2011; Meyer et al., 2013). Morphine has been shown to increase the rate of viral replication in 

fetal brain cells co-cultured with a chronically infected monocytic cell line (Peterson et al., 1994).  
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This effect may be due to increased levels of CXCR4 and CCR5, which are known to be HIV co-

receptors.  HIV co-receptors enhance viral binding and subsequent entry into the cell. Greater 

numbers of cells being infected can then lead to increased viral replication as well as increased 

neuropathogenesis (Steele et al., 2003). 

  

Aside from any neuroinflammation that may be caused directly by HIV infection, chronic 

morphine exposure on its own affects microglia function (Song and Zhao, 2001; Watkins et al., 

2005).  Chronic morphine treatment can activate µ opioid receptors on glia, leading to increased 

glial activation, which can be blocked by treatment with minocycline.  Minocycline is a 

tetracycline derivative that is mainly used as a broad acting antibiotic.  However, it has been 

shown to block microglial activation via mechanisms unrelated to its antimicrobial actions 

(Tikka et al., 2001; Cui et al., 2008; Huang et al., 2014).  This glial activation can then lead to 

subsequent increases in the release of nitric oxide and proinflammatory cytokines (Chao et al., 

1994; Peterson et al., 1998).  Our own lab has also shown that morphine may alter microglial 

activity by altering ROS (reactive oxygen species) production levels; and can increase microglial 

motility by increased chemokine and cytokine release from astrocytes.  (El-Hage et al., 2006; 

Turchan-Cholewo et al., 2009), This can then lead to further exacerbation of the symptoms seen 

in HIV neurodegeneration.  Another possibility is that morphine may lead to aberrant neuron-glia 

communication (Johnston et al., 2004).  Regardless of the scenario, glia are key contributors to 

HIV-1 and morphine-induced neurotoxicity.  In fact, studies show that neuronal toxicity 

associated with HIV-1 and morphine is greatly reduced in the absence of glia, as well as in the 

presence of glia taken from µ opioid receptor knockout mice (Zou et al., 2011).  This provides in 

vitro evidence that morphine, via glial µ opioid receptors, imparts significant neurotoxicity.  
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There are many cellular outcome measures that HIV-1 Tat and morphine can affect, 

including the ability of astrocytes to buffer glutamate, destabilize [Ca2+]i, and increase the release 

of ROS and cytokines.  Despite the evidence, the underlying signaling pathways have not yet 

been identified.  Moreover, different cellular targets and cell types can be differentially affected.  

The effects of opiates and HIV differ in a cell type, age dependent, and a regionally variable 

manner.  A greater understanding of cell specific pathways is needed to find more effective 

treatments for HIV and opioid-related problems with neurocognition. 

 

Opioid Receptors 

Opioid receptors are classified as GPCRs (G-protein coupled receptors), which are 

predominately coupled to pertussis toxin-sensitive Gi/Go proteins.  Upon activation, these large, 

7 transmembrane spanning receptors transduce their signal by second messenger signaling inside 

the cell.  Depending on a variety of factors including the particular G-protein involved, RGS 

proteins, and other factors, GPCRs can act via multiple cellular pathways.  Common events 

downstream of opioid receptors include the inhibition of adenylyl cyclases and voltage gated 

Ca2+ channels, and the activation of GIRKs (G protein-activated inwardly rectifying K+ channels) 

and PLCβ.  There are three classical opioid receptors, µ (MOR), κ (KOR), and δ (DOR). More 

recently a fourth member, nociception/orphanin FQ (NOP), has been added.  Endogenously these 

receptors are activated by peptides that fall into three main families, enkephalins, dynorphins, 

and endorphins, which derive from four precursors:  proenkephalin, prodynorphin, pro-

opiomelanocortin, and nociceptin/orphanin FQ.  These peptides are released from neurons upon 
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stimulation in order to activate opioid receptors on nearby cells (Clapham and Neer, 1997; 

Waldhoer et al., 2004; Koppert, 2007; Dreborg et al., 2008; Sundström et al., 2010). 

Aside from the endogenous peptides that naturally activate opioid receptors, there are 

many exogenous ligands that can activate this receptor system as well.  In general agonists that 

selectively activate MOR or DOR are considered to be analgesic and rewarding, and those that 

are selective for the KOR tend to be dysphoric.  Opiates are drugs of choice for the treatment of 

chronic pain.  However, tolerance is caused by chronic opiate use. Classically, tolerance is 

thought to occur through desensitization of the receptor mediated by GRK (G protein coupled 

receptor kinases) receptor phosphorylation and recruitment of β arrestin, which will then bind to 

the phosphorylated receptor and block GPCR signaling. β arrestin can initiate subsequent 

endocytosis, leading to an overall reduction in the level of opioid receptors present at the cell 

membrane (DeWire et al., 2007). However, even though morphine induces tolerance, down 

regulation of MOR levels does not occur. Thus receptor desensitization and uncoupling to 

downstream signaling pathways may also play a significant role in tolerance.  Over time, 

tolerance often leads to dependence and addiction (Waldhoer et al., 2004).   

 

The Basal Ganglia: Where HIV-1 and Opiate Interactions Overlap  

HIV preferentially targets the basal ganglia, and much of the neurotoxicity is mediated by 

HIV-infected or activated glia (Persidsky and Gendelman, 2003; Anthony et al., 2005; Kraft-

Terry et al., 2010; McArthur et al., 2010; Harezlak et al., 2011; Steinbrink et al., 2013).  The 

basal ganglia is also a site where many drugs of abuse have their effects and, as a result, may be 

a preferential area to look for HIV and opioid interactions (Nath et al., 2001; Nath, 2002; Nath et 
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al., 2002). The striatum, the largest component of the basal ganglia, has a very high density of µ 

opioid receptors (Kuhar et al., 1973; Arvidsson et al., 1995; Mansour et al., 1995; Wang et al., 

1999). Hence we have investigated HIV and opioid interactions in the striatum in all of our 

murine model studies (both in vitro and in vivo) (Sorrell and Hauser, 2014).   

 

Purinergic Receptors 

Purinergic receptors are characterized by the purine ligands that activate them, with the 

P1 receptor family being activated by adenosine and the P2 receptor family being activated by 

ATP.  The P2 receptor family can be further subcategorized into P2X and P2Y receptor families, 

which are characterized according to receptor type: ligand-gated ion channels and GPCRs, 

respectively. The P2Y family consists of 8 members: P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, 

P2Y13, P2Y14.  Some numbers in the nomenclature appear to be absent (e.g. P2Y3, P2Y5, P2Y7, 

etc.) due to the fact that some receptors originally classified as P2Y later turned out to not be 

purinergic receptors and had been erroneously classified (Abbracchio et al., 2003).  In the 

following work I will be focusing on P2X receptors. P2Y receptors have been reviewed in detail 

elsewhere (Weisman et al., 2012b).   

There are currently seven known members of the P2X receptor family, P2X1-7.  All of 

these are ligand gated ion channels having nearly equal permeability to Na+, K+, and significant 

permeability to Ca2+ (Ralevic and Burnstock, 1998; Khakh, 2001; North, 2002).  Ca2+ 

permeability is similar to that of the NMDA receptor (Egan and Khakh, 2004).  P2X ligand gated 

ion channels consist of 3 subunits that come together to form the ion channel.  Each subunit 

consists of two trans-membrane domains and a large extracellular loop, with both the N and C 
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terminus being located in the cytosol (see upper left hand corner of Fig. 2) (Khakh and North, 

2006).  Three molecules of ATP are able to bind the receptor resulting in opening of the ion 

channel.  There is evidence for the binding of ATP to occur in between two subunits and no 

evidence that less than 3 molecules of ATP can illicit partial channel activity (Browne et al., 

2010; Coddou et al., 2011).   The EC50 of ATP to activate these receptors ranges from 1-10 µM, 

except in the case of P2X7 receptors, which have a much higher EC50 value of approximately 100 

µM.  Trace metals such as zinc and copper can also modulate the EC50 values for P2X receptors, 

causing an increase or decrease depending on the metal and the receptor subtype (Acuña-Castillo 

et al., 2000; Khakh and North, 2006).  Interestingly, upon prolonged ATP stimulation (several 

seconds), several of the P2X sub-members (P2X2, P2X4, and P2X7), are able to undergo pore 

dilation.   Larger cations, such as NMDG (N-methyl-D-glucamine) and even ATP itself, can also 

flux through the ion channel. At this time it is not clear how molecules that move through the 

dilated pore may affect cellular signaling pathways (Chessell et al., 1997; Yan et al., 2008; 

Samways et al., 2012).   
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Figure 6.  Purinergic Receptor Family Outline and P2X Receptor Cartoon.  Purinergic 
receptors are broken down into two subfamilies, P1 and P2, which are activated by adenosine 
and ATP respectively.  The P2 subfamily is further broken down into P2X (ligand gated ion 
channels) and P2Y (GPCRs) receptors.  Red highlighting denotes receptor subtypes that are most 
relevant to the work discussed in this document. Diagram in upper left hand corner depicts the 
structure of a P2X subunit and subunit confirmation in the membrane. A subunit consists of two 
trans-membrane domains, and a large extracellular loop, where 3 subunits come together to form 
functional ligand-gated ion channel (Khakh and North, 2006).  
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P2X4 Receptors 

 

The P2X4 receptor undergoes slow desensitization and its receptor activity can be 

modulated by trace elements such as Zn2+ that decrease the EC50 for ATP from approximately 7 

µM to 2.5 µM.  The zebrafish P2X4 receptor was the first of the P2X receptors to be crystalized, 

where detailed atomic structure was revealed (Kawate et al., 2009).  P2X4 receptors have been 

shown to be readily involved in trafficking from lysosome vesicles to the cell surface.  Probably 

due to their extensive N-linked glycans, these receptors are very stable in the lysosome and can 

traffic back to the cell surface where they are able to be functional ion channels (Qureshi et al., 

2007).  There are currently no selective agonists or antagonists that target the P2X4 receptor over 

other P2X subtypes.  Ivermectin is a selective allosteric modulator at P2X4 receptors compared to 

the other P2X receptors; however, it does have actions at other non-purinergic receptor sites.  

Furthermore, ivermectin is hard to work with due to its lack of solubility in water (Khakh et al., 

1999; Silberberg et al., 2007). 

 

P2X4 Receptors: Likely Candidates to Modulate HIV and Opioid Signaling 

 

We hypothesize that the activation of the P2X4 receptors on microglia may be a critical 

step in the synergistic toxicity of Tat and morphine to neuronal cells. Although the question of 

whether P2X4 receptors play a role in HIV and opioid interactions has never been investigated 

before, several more recent studies suggest that this receptor subtype is involved in other 

inflammatory events, such as the pain pathways in the dorsal root ganglia and spinal cord (Tsuda 

et al., 2003; Ulmann et al., 2008; Tsuda et al., 2009). Furthermore, it has also been shown that 
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P2X4 receptors that are specifically located on microglia are up-regulated after nerve injury are 

involved in certain types of pain (Tsuda et al., 2003; Ulmann et al., 2008). These studies are 

important because microglia play a major role in causing neurotoxicity due to HIV. Based on 

these findings, we hypothesize that P2X4 receptors on microglia may also be a critical part of 

inflammation and neuronal damage seen in the basal ganglia of HIV patients, which is 

exacerbated with treatment of morphine.  

We have further reason to hypothesize that the P2X4 receptor is involved in morphine + 

Tat toxicity based on previous work that has shown that the effects of morphine on microglia are 

reportedly mediated through the P2X4 receptor (Horvath and DeLeo, 2009) . This paper observed 

that in cortical primary cell cultures when cells were treated with TNP-ATP (a P2X1-7 inhibitor) 

but not when treated with PPADS (a P2X1-3,5-7 inhibitor), morphine-dependent microglial 

migration was blocked. It also showed that after a 12 hr treatment with morphine, P2X4 receptor 

levels were significantly increased on microglial cells in the cortex. A 2010 publication by the 

same group (Horvath et al., 2010)  determined that injection of P2X4 asODN (antisense 

oligonucleotide) into the lumbar region of the spine, as well as into the subarachnoid space, 

inhibited the development of chronic morphine tolerance. Since it has been further suggested that 

microglia and morphine interact via the P2X4 receptor, we wished to investigate P2X4 receptors 

in the basal ganglia and determine whether they might be involved in HIV and morphine’s 

interactive effects. 
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Release and Breakdown of Extracellular ATP  

There are several possible sources for extracellular ATP, the first being dead or ruptured 

cells that release their contents, including ATP. Fairly high levels of extracellular ATP can be 

reached this way.  For example, ischemia caused by stroke or a traumatic brain injury, can 

produce extracellular ATP levels as high as 1 mM at the site of the tissue trauma (del Puerto et 

al., 2013).  ATP can also be released from cells that are alive.  Release has been shown to occur 

through vesicular release in neurons, where it can be co-released with several other 

neurotransmitters, such as ACh, GABA and catecholamines (Burnstock, 2007).  ATP can also be 

released from astrocytes (Burnstock, 2007).  A final possibility is that P2X receptors that 

undergo pore dilation (upon prolonged ATP stimulation) can also flux ATP (Khakh and North, 

2012).  Although it has been shown that supernatant from HIV infected monocytes, as well HIV 

Tat or morphine treatment can lead to increases in extracellular ATP, no one has investigated the 

source of this ATP (Perry et al., 2005; Tovar-Y-Romo et al., 2013; Sorrell and Hauser, 2014).  

Once ATP is release into the extracellular space, its breakdown is rapid and occurs via a family 

of enzymes called ectonucleotidases that dephosphorylate or hydrolyze ATP back to adenosine, 

where it can then be recycled back into the cell and used to make more ATP (Goding, 2000).  
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Chapter 2: The use of pharmacological tools to investigate the role of the P2X receptor in 
Tat and/or morphine related neurotoxicity 

 

Introduction 

To date there have been only two other studies published that investigate purinergic 

receptors and how they may regulate HIV viral interactions.  The first of these studies showed, 

through use of selective agonists and antagonists, that P2X1, P2X7, and P2Y1 may all be involved 

in viral replication, however only the P2X1 subtype was involved in viral entry (Hazleton et al., 

2012). The second study looked at the ability of purinergic receptors to regulate neuronal injury 

in the hippocampus caused by the addition of supernatant from HIV infected microphages.  The 

study showed ATP was present in HIV infected macrophage supernatant and by using several 

purinergic and NMDA/AMPA antagonists concluded that P2X receptors that are activated by 

this ATP are involved in neuronal injury and death due to HIV infection, at least partially due to 

their ability to modulate glutamatergic tone (Tovar-Y-Romo et al., 2013).  These studies as well 

as studies mentioned in Chapter 1 led us to investigate whether P2X receptors, and P2X4 

receptors in particular, mediate HIV-1 Tat and morphine interactions.   

We first characterized P2X4 expression in our cell culture model.  We wanted to both 

confirm their presence, as well verify our model exhibits receptor expression patterns consistent 

with what has already been shown in the literature.  In order to study whether P2X receptors play 

a role in Tat and morphine related neurotoxicity, we first used and manipulated a primary mixed 

neuron and glia co-culture model with pharmacological tools.  We initially used TNP-ATP 

(P2X1-7 competitive antagonist) (Neelands et al., 2003) and PPADS (P2X1-3&5-7 antagonist) (Gum 

et al., 2011) to investigate the P2X4 receptor actions in particular.  Although it initially seemed 

experiments done with PPADS helped point to P2X4 modulation of HIV-1 Tat and morphine 
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mediated neuronal death (Fig. 3a), PPADS also caused neuronal toxicity when administered with 

alone (Fig. 3a-b), making it impossible to differentiate from PPADS verses Tat or morphine 

toxicity, and we could not conclude anything from cells treated with PPADS.  After our initial 

studies only TNP-ATP was used to look at outcomes due to the activation of P2X receptors.  

Studies were conducted using TNP-ATP in a striatal murine primary cell culture model where 

neuronal death, changes in dendritic length, and increases in intracellular calcium levels were 

used as measures of neuronal instability. ATP is use to show results of direct P2X receptors 

activation, which can then be compared to outcomes induced by Tat and morphine treatment.  

Finally, selective agonists and antagonists were used to target P2X1, P2X3, and P2X7 receptor 

subtypes in order to confirm any role they may play in Tat and morphine related neurotoxicity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

	  

28	  
	  

 

 

 

  

Figure 7.  PPADS does not reverse Tat or morphine toxicity, but shows toxicity by itself (a-
b).  PPADS, which has a very low affinity to block the P2X4 receptor, but does block several 
other P2X subtypes was not able to block morphine + Tat affiliated neuronal death.  However, 
PPADS by itself was found to cause significant neuronal toxicity (a).  This toxicity was shown to 
occur in a concentration dependent manner (b).  The data represent the mean ± SEM from n=4 
experiments. A one-way repeated measures ANOVA was performed followed by Duncans post 
hoc test.  (*p <0.05 vs. control treated cells). 
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Methods 

Experiments were conducted in accordance with procedures reviewed and approved by 

the Virginia Commonwealth University Institutional Animal Care and Use Committee and 

conform to Association for Assessment and Accreditation of Laboratory Animal Care guidelines. 

 

Cell culture 

Mixed glial bed layer preparation 

 Striatal mixed glial cultures were prepared from P0-P2 ICR (CD-1®; Harlan 

Laboratories, Indianapolis, IN) mouse pups. Striata were dissected, minced, and incubated with 

trypsin (2.5 mg/ml; Sigma, St. Louis, MO) and DNase (0.015 mg/ml; Sigma) in 10 mL of 

Dulbecco’s Modified Eagle’s Medium (DMEM) (Invitrogen, Carlsbad, CA) with 25 µM 

glutamate (30 min, 37 °C). Tissue was then triturated, resuspended in 10 ml glial maintenance 

medium made of DMEM with 10 % defined fetal bovine serum (Hyclone, Logan, UT), and cells 

were filtered twice through 70 µm pore nylon mesh. Cells were plated onto 24-well plates at a 

density of 3×10^5 per well and maintained in media that contained 10 % serum.  Medium was 

changed 24 h after being plated and then every 2–3 days afterwards. Glia were allowed to reach 

confluence, which took approximately 10 days.   

Co-culture with neurons  

Striatal neurons were prepared from E15-E16 ICR (CD-1®; Harlan Laboratories) mouse 

embryos.  Striata were dissected, minced, and incubated with trypsin (2.5 mg/ml) and DNase 

(0.015 mg/ml) in 10 mL of Neurobasal medium supplemented with B27 (Invitrogen) and 0.5 
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mM L-glutamine (Invitrogen) (30 min, 37 °C). Tissue was then triturated, resuspended in 10 ml 

of supplemented Neurobasal medium and cells were filtered twice through 70 µm pore nylon 

mesh. Neurons were placed on top of a confluent mixed glial bed layer at a density of 0.8–

1.0×10^5 cells per well. Neuron-glia co-cultures were maintained in complete Neurobasal 

medium and allowed to mature for about 5 days prior to start of the experiments, with media 

exchanged 24 h after neurons were plated and then every 2–3 days. Our mixed-glia cultures have 

been previously characterized to contain approximately 90 % astrocytes and 10 % microglia 

(Zou et al., 2011). 
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Figure 8. Characterization of glial cell layer. All images are confocal; multiple z-stacks are 
compressed into a single image to show localization through entire cells. Left image is shown at 
lower magnification to give a representative view of glial cultures used for the co-culture system. 
Smaller panels to the right of each figure show color separation.  Cells were immunostained for 
GFAP (green) and Iba-1 (red), and counterstained with Hoechst33342 nuclear marker (blue). 
Note that the majority of glia are GFAP+ astrocytes, with 10% Iba-1 microglia. Scale bar = 50 
µM (Zou et al., 2011) 

 

 

 

 

 

 



www.manaraa.com

	  

32	  
	  

Immunocytochemistry  

Cell cultures were fixed for 15 min in 4 % paraformaldehyde in phosphate buffer (pH 7.2 

at 4 °C), permeabilized in 0.1 % Triton-X 100, and rinsed 3×20 min in PBS, pH 7.2. Cultures 

were incubated in diluted primary antiserum overnight at 4 °C in PBS, pH 7.2 with 1 % 

crystalline grade BSA (Calbiochem/EMD Millipore, Billerica, MA) and 0.1 % Triton-X 100. 

Rabbit anti-P2X4 receptor (1:500; Alomone Labs, Jerusalem, Israel) was colocalized with either 

mouse anti-microtubule-associated protein 2 (MAP2) (1:500; EMD Millipore) for identification 

of neurons, or with goat anti-ionized calcium binding adapter molecule (Iba1) (1:500; Abcam, 

Cambridge, MA) for the identification of microglial cells. Appropriate secondary antibodies 

conjugated to Alexa 488 or Alexa 596 (1:500 dilution; Molecular Probes/Invitrogen) were used 

to identify primary antibody targets. Nuclei were counterstained with Hoechst 33342 (1 µg/ml). 

Cultures were rinsed and mounted in Prolong Gold Antifade Reagent (Molecular 

Probes/Invitrogen). Samples were imaged using a Zeiss LSM 700 laser scanning confocal 

microscope equipped with a 63× oil immersion objective. Images were collected using ZEN 

2009 Light Edition software (Carl Zeiss, Inc., Thornwood, NY) and edited using Adobe 

Photoshop CS3. 

 

Drug and HIV-1 Tat treatments  

Recombinant HIV-1IIIB Tat1–86 (100 nM) (ImmunoDiagnostics, Woburn, MA) was the 

HIV protein used. Morphine sulfate (500 nM) and naloxone (500 nM) were used to target the µ 

opioid receptor (Sigma). NF499 (300 nM; Tocris Bioscience, Bristol, UK), while TNP-ATP 

(2′,3′-O-(2,4,6-trinitrophenyl) adenosine-5′-triphosphate) (multiple concentrations), PPADS (300 
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nM), BBG (Brilliant Blue-G) (1 µM), and A-317491 (1 µM), BzATP (3′-O-(4-benzoyl)benzoyl 

adenosine 5′-triphosphate) (300 µM) (Ma et al. 2009; Valdez-Morales et al. 2011), αβMe-ATP 

(αβ-methylene-ATP) (1 µM), and ATP (multiple concentrations) were all obtained from Sigma. 

Concentrations of NF499, A317491, PPADS, BBG, BzATP, and αβMe-ATP were chosen based 

on values shown to be effective elsewhere in the literature (Jarvis et al., 2002; Rettinger and 

Schmalzing, 2004; Raouf et al., 2007; Young et al., 2007; El-Ajouz et al., 2011) (See Table 1). 
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Table 1.  IC50/ EC50 values (µM) for P2X antagonists and agonists  

 P2X1 P2X2 P2X3 P2X4 P2X5 P2X6 P2X7 

Antagonist        

TNP-ATP 0.006 1 0.001 15 ----- ----- >30 

A-317491 >10 >100 0.1 >100 ----- >100 >100 

NF499 0.7 >100 >100 >100 ----- ----- >100 

BBG >5 1.3 >10 >10 ----- ----- 0.01 

PPADS 1 1 1 >500 3 >100 50 

Agonist        

ATP 0.07     1.2 0.5 10 10 12 100 

αβMe-ATP 0.3 >300 0.8 >300 >300 >100 >300 

BzATP 0.003  

 

0.75 0.08 7 >500 ----- 20 

 

Notes: ----- indicates information is not yet available, Values listed are for either rat or human 
subunits (Bianchi et al., 1999; Jiang et al., 2000; Khakh and North, 2012). Also, values may be 
species specific in some cases (Jarvis and Khakh, 2009; Coddou et al., 2011) 
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Assessment of neuron survival  

As previously described (Suzuki et al., 2011), a microscope (Zeiss Axio Observer Z.1) with 

environmental chamber (PeCon GmbH, Erbach, Germany) and a computer-controlled, x, y axis 

stage encoder was used to track individual neurons over time (Zeiss AxioVision 4.6 software; 

Mark&Find, and Time- Lapse modules) (Fig. 9). Cultured neurons within multiple microscopic 

fields were randomly selected prior to the addition of drug and HIV-1 Tat treatments. Time-lapse 

images were taken every 30 min for 72 h. Medium was not changed during the experiment. 

Approximately 30 healthy neurons with well-defined dendritic arbors and single axons were 

followed for individual treatment groups in each experiment using phase-contrast microscopy 

(40× magnification) 2-3 fields of cells were used to count for all groups. Cells that drifted out of 

the field of view during experiments were not counted. Neuron death was recorded upon collapse 

and fragmentation of the cell body, and has been verified previously with ethidium homodimer 

staining (Buch et al., 2007). Data are presented as the percentage of surviving neurons relative to 

cells present at the onset of the experiment (0 h); experiments were repeated at least n =4 times. 
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Figure 9.  Computer-aided, time-lapse tracking of neurodegenerative changes in the same 
cells. A within-subjects design is used to compare the survival of the same neuron before (0 h) 
and after treatment; data are the percentage of surviving neurons relative to pretreatment values.  
Neurons are digitally scanned and tracked individually at 30 min intervals for 72 h using a Zeiss 
Axio Observer Z.1 microscope, stage encoder, and environmental control. 
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Measuring intracellular calcium concentration ([Ca2+]i)  

Tat and morphine ± TNP-ATP-dependent changes in [Ca2+]i were measured by 

ratiometric imaging of fura-2. Cells were loaded with 1 µM fura-2/AM (Molecular 

Probes/Invitrogen; 45 min, 37 °C) in Hank’s balanced salt solution with 10 mM HEPES buffer 

(pH 7.2) and then incubated for an additional 30 min at 37 °C to allow for complete hydrolysis of 

the acetoxy-methyl ester group. Data are reported as percentage change in fura-2 ratio at 

340/380-nm excitation relative to values recorded at T =0 for each neuron, and were proportional 

to [Ca2+]i. Due to the heterogeneous nature of purinergic receptor expression by striatal neurons 

(Amadio et al., 2007), we separated the cells into two groups: responsive (neurons displaying a 

response) and non-responsive (neurons lacking any response) neurons. Each response curve 

represents the mean ± SEM from at least n =3 separate experiments—each consisting of the 

average percent control 340/380-nm excitation ratios of 5–6 responsive neurons. This allowed us 

to see effects that otherwise may have been undetectable due to high variability. Responsive 

neurons were included in graphed data and used for statistical analysis. The same numbers of 

neurons were observed across all treatment groups. 

 

Extracellular ATP measurements  

Neuron mixed-glial co-cultures were exposed to morphine (100 nM), HIV-1 Tat, and/or 

ATP (non-selective P2X agonist; Sigma) ± TNP-ATP. Cells were pretreated for 15 min with 

ARL67156 (Tocris Bioscience), an ecto-ATPase inhibitor, to block the rapid breakdown of 

extracellular ATP, which allowed us to measure more accurately the amount of ATP being 

released. At 30min, 1 h and 2 h following continuous exposure, 100 µL aliquots of media were 
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removed and placed into a 96 well plate.  ATP was measured by luminescence reaction using an 

ATPLite™Kit (Perkin Elmer,Waltham,MA) according to the manufacturer’s instructions, except 

cell lysis solution was not added in order to preserve integrity of the cell and ensure 

measurement of only extracellular ATP levels. The aliquoted media was placed on a microplate 

reader (PHERAstar FS, BMG Labtech, Cary, NC) and ATP concentrations were calculated 

based on a standard curve. 

 

Dendrite length measurements  

After 72 h of treatment, cultures were fixed for 5 min with 4 % paraformaldehyde, 

washed in PBS (3×5 min), and incubated with rabbit anti-microtubule associated protein-2 

(MAP2) antibodies overnight at 4 °C (1:500 dilution; Chemicon/EMDMillipore, Billerica,MA). 

The secondary antibody conjugated to Alexa 488 (mouse anti-rabbit; 1:500 dilution; Molecular 

Probes/Invitrogen) was incubated on the cells for 2 h.  Cells were counterstained with Hoechst 

33342 (1 µg/ml) for 5 min and then washed with PBS (3×5 min). Neurons were left in PBS at 

4 °C until images were taken. All images were acquired at 20× magnification using a computer 

controlled microscope (Zeiss Axio Observer Z.1). Dendritic length was estimated by the number 

of intersections with calibrated concentric circles using a modified Sholl procedure (Sholl, 1953; 

Hauser et al., 1989), with slight modifications for in vitro measurements (Singh et al., 2005; 

Suzuki et al., 2011). All neurons that had clearly defined cell bodies located completely within 

the viewing field were included. Hoechst 33342 staining was used to label cell nuclei. MAP2-

positive neurons that lacked dendritic processes but had clear cell bodies were counted as having 

1 point of intersection. Neurons lacking dendrites were counted in order to better represent 
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groups in which neurons may have been less healthy due to treatment. Approximately 40–60 

neurons were sampled per treatment group in each experiment. Data are presented as the mean 

dendritic length per neuron ± SEM from at least 4 independent experiments. 
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Figure 10.  Explanation of Sholl Analysis.  A transparency sheet with concentric circles is 
placed on top of a neuron and centered at the cell body.  Dendrite intersections with concentric 
circles are counted.  Each circle corresponds to 10 µm in length.  Total dendrite length was 
estimated for each individual neuron.     
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Statistics 

For all time-lapse and calcium imaging experiments a one-way repeated measures 

ANOVA was used. For all other experiments a one-way ANOVA was performed. If significant 

overall differences were detected by ANOVA, Duncan’s post hoc test was performed to assess 

intergroup differences. A p-value less than 0.05 was considered significant (Statistica; StatSoft, 

Tulsa, OK). 
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Results 

 

Cellular localization of P2X4 receptors in mouse striatal co-cultures 

Although others have characterized P2X4 receptor immunoreactivity in neurons and glia 

within the CNS (Garcia-Guzman et al., 1997; Lê et al., 1998), including the striatum (Amadio et 

al., 2007), most of this work has been done in tissue sections from rats and humans.  Accordingly, 

we wanted to verify the presence of P2X4 receptors and determine the cellular patterns of 

expression in our mouse primary mixed-glia and neuron culture system.  P2X4 receptor presence 

was confirmed in our primary striatal co-cultures (Fig. 4).  P2X4 receptor immunofluorescence 

was co-localized in Iba-1 immunoreactive microglia (Fig. 4a-f).  P2X4 receptor 

immunoreactivity appeared to be more intense in activated, amoeboid microglia (Fig. 4a-c), 

whereas a more dispersed expression pattern in quiescent microglia (Fig. 4d-f).  Up regulation of 

the P2X4 receptor at the cell surface of activated microglia has been shown to occur by others 

(Tsuda et al., 2003; Ulmann et al., 2008).  P2X4 receptor positive cells that lacked neuronal 

morphology and lacked Iba-1 immunoreactivity that appeared to be astrocytes were also 

observed (Fig. 4d-f).  Moreover, a majority of MAP2-immunoreactive neurons also possessed 

P2X4 immunoreactivity (Fig. 4g-i).  Neurons typically displayed a slightly more stippled pattern 

of P2X4 immunofluorescence than in ramified (quiescent) microglia (Fig. 4g-i).  P2X4 expression 

by neurons has been extensively described in the CNS (Lê et al., 1998; Ashour and Deuchars, 

2004), including heterogeneous patterns of expression by striatal neurons (Amadio et al., 2007). 
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Figure 11. Immunocytochemical colocalization of P2X4 receptors with striatal microglia 
and neurons from WT mice (a–i). P2X4 receptor immunofluorescence (green) is readily 
colocalized in microglia (red Iba1 immunofluorescence) (a–f).  The neuronal marker, MAP2 (red 
fluorescence) in the bottom left panel and the P2X4 receptor (green fluorescence); merged 
images (g–i).  Microglia with an activated morphology display P2X4 receptor 
immunofluorescence (arrow) (a–c), more quiescent microglia also display P2X4 
immunoreactivity but with less Iba1 overlap (arrow) (d–f).  Neurons (arrowheads) are also 
positive for the P2X4 receptor, but the fluorescent product is less intense than in microglia (g–i).  
A cell possessing P2X4 receptor, but not Iba-1, immunoreactivity that is likely to be an astrocyte 
is denoted by an asterisk (d–f); all images a–h are at the same magnification as i; cell nuclei were 
counterstained with Hoechst (blue fluorescence) 
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Evaluation of P2X receptor involvement in Tat and opioid related neuronal toxicity: Time-
lapse experiments  
 

Either morphine or Tat treatment alone caused a decrease in neuronal survival compared 

to control levels, while neuronal losses were significantly greater when morphine and Tat were 

combined compared to either group alone (Fig. 12a-b). The enhancement of the Tat toxicity in 

the presence of morphine was prevented by pretreatment with the opioid antagonist, naloxone. 

Pretreatment with TNP-ATP by itself had no effect on neuronal survival, but reversed the 

neurotoxic effects of either morphine or Tat toxicity alone, or in combination (Fig. 12a-b).  
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Figure 12. Time-lapse studies show Tat + morphine-induced neurotoxicity is prevented by 
pretreatment with TNP-ATP (a–b).  Tat and/or morphine treatment caused significant neuron 
death compared to controls, while naloxone blocked the effects of morphine (a).  Neurotoxicity 
was prevented in cells pretreated with TNP-ATP (300 nM). The TNP-ATP + Tat (T), TNP-ATP 
+ morphine (M), TNP-ATP + T + M, TNP-ATP + T +M+ naloxone (N), and TNP-ATP + ATP 
groups differed significantly from their corresponding groups that are lacking the antagonist (b).  
The data A and B are from the same experiment, but separated into two graphs for clarity (the 
control group in A and B is identical). The data represent the mean ± SEM from n=4 experiments. 
A one-way repeated measures ANOVA was performed followed by Duncans post hoc test. (*p 
<0.05 vs. control treated cells, δ p <0.05 vs. Tat treated cells, # p <0.05 vs. morphine treated cells, 
§ p <0.05 vs. corresponding groups lacking TNP-ATP); note, however, that the survival of 
neurons treated with TNP-ATP alone did not differ from control neurons. 
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TNP-ATP Acts Concentration-Dependently 

TNP-ATP reversed Tat and morphine-related neuronal death in a concentration-

dependent manner (Fig. 13a-c). The concentration-dependent protective effect was seen when 

the cells were treated with Tat or morphine alone, or Tat and morphine in combination. In all 

three cases, the highest concentration, 300 nM, completely prevented neuronal losses, further 

confirming results seen in Fig. 5. At intermediate concentrations, 100 nM and 50 nM, TNP-ATP 

partially blocked decreases in survival rates; these concentrations resulted in intermediary levels 

of protection that differed significantly from both control levels, and Tat- and/or morphine- 

treated groups. At the lowest 10 nM concentration, TNP-ATP caused no change in the proportion 

of dying neurons caused by Tat/morphine at 72 h. Prior to 48 h, there were significantly more 

neuron losses with 10 nm TNP-ATP when compared to Tat alone. However, this effect did not 

persist to 72 h (Fig. 13b). There was a trend toward increased neuronal death with 10 nM (Fig. 

13a and 13c); however, the trend was not significant. It is possible that activating higher affinity 

P2X1 and P2X3 receptors is protective in this system. Finally, it should be noted that 

concentration curve experiments were performed independently of one another, so it may not be 

appropriate to compare levels of neuronal death induced by Tat and morphine alone versus Tat 

and morphine combined. 

 

Next, we show that ATP, our positive, concentration- dependently causes neuron death.  

Importantly, like with Tat and morphine treatment, TNP-ATP was able to concentration-

dependently block this effect (Fig. 14a-b).  Treatment with 50 nM ATP was not different than 

controls.  However, 100 nM, 500 nM, and 1 µM ATP all caused significant increases in cell 

death when compared to control cells (Fig. 14a).  TNP-ATP was able to concentration 
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dependently prevent neuron death caused by 1 µM ATP, where 300 nM TNP-ATP completely 

blocked cell death and is not different than control treated cells.  100 nM TNP-ATP partially 

blocked ATP caused neuron death, being both significantly different from control cells and ATP 

alone.  50 nM and 10nM ATP were not significantly different than ATP alone (Fig. 14b). 
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Figure 13. TNP-ATP pretreatment caused concentration-dependent reductions in Tat 
and/or morphine-induced neurotoxicity (a–c). Exposure to neurotoxic levels of morphine (500 
nM) (M) (a), Tat (100 nM) (T) (b), and combined Tat and morphine (T + M) (c), were fully 
prevented by concurrent administration of 300 nM TNP-ATP, while lower TNP-ATP 
concentrations failed to or only partially blocked the neurotoxicity. The data represent the mean 
± SEM from n =4 experiments. A one-way repeated measures ANOVA was performed followed 
by Duncans post hoc test (*p <0.05 vs. control treated cells, §p <0.05 vs. morphine treated cells, 
$p <0.05 vs. Tat treated cells, #p <0.05 vs. Tat + morphine treated cells). 
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Figure 14. ATP leads to cell death in a concentration dependent manner, which can be 
prevented by TNP-ATP, also in a concentration dependent manner.  Multiple ATP 
treatments, 100 nM, 500 nM, and 1 µM ATP, all caused significant increases in cell death when 
compared to control cells (a).  300 nM TNP-ATP prevented neuron death caused by 1 µM ATP. 
100 nM TNP-ATP partially blocked neuronal death caused by ATP, as survival was significantly 
different from both control cells and 1 µM ATP.  TNP-ATP treatment of 50 nM and 10nM were 
not significantly different than 1 µM ATP (b). The data represent the mean ± SEM from n =4 
experiments. A one-way repeated measures ANOVA was performed followed by Duncans post 
hoc test (*p <0.05 vs. control treated cells, #p <0.05 vs. 1 µM ATP treated cells). 
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P2X Receptors also Modulate Changes in Dendritic Length due to Tat and Morphine 

Treatment 

Although Tat and morphine significantly increase neuronal death, a large number of cells 

(about 65-70%) survive, even after 72 h of continuous exposure. To further investigate the health 

of the surviving cells at this time and to evaluate whether one or more members of the P2X 

receptor subfamily might additionally mediate sublethal neuronal injury, potential changes in 

dendritic length were assessed in MAP2-immunoreactive dendrites using a modified Sholl 

analysis (Singh et al., 2005; Suzuki et al., 2011). Average dendritic length was significantly 

reduced in MAP2 positive neurons at 72 h following either Tat and/or morphine treatment. 

Similar reductions were seen in dendritic length irrespective of whether Tat and morphine were 

given separately or in combination. ATP, the positive control, significantly decreased dendritic 

length as anticipated; the decreases across all groups containing Tat or morphine, as well as ATP, 

were prevented with TNP-ATP (Fig. 15 a-b).  Potentiated decreases in dendrite length were not 

observed in combination Tat and morphine treatment versus Tat and morphine treatment alone as 

was seen in our neuronal survival assay. This may be due to differences in sensitivity of the 

assays (with in subject design versus population analysis).  Accordingly, since we did not see 

any added affect of Tat and morphine in combination, there was no difference between Tat + 

morphine treatment versus Tat + morphine + naloxone treatment; as there was no added 

morphine toxicity for naloxone to block.  
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Figure 15. TNP-ATP pretreatment negated Tat and/or morphine mediated decreases in 
synaptodendritic injury and mean dendritic length (a–f). Neurons in striatal neuron-glia co-
cultures treated with ATP, or Tat (T) and/or morphine (M) showed significant decreases in mean 
dendritic length compared with controls (a).  Treatment with TNP-ATP (300 nM) significantly 
increased the length of the average dendrite compared to corresponding treatments without TNP-
ATP (b).  The data in a and b are from the same experiment, but separated into two graphs for 
clarity.  The data represent the mean ± SEM from n =4 experiments. A one-way ANOVA was 
performed followed by Duncans post hoc test (*p <0.05 vs. control treated cells, #p <0.05 vs. 
corresponding treatment group lacking a P2X receptor antagonist).  Appearance of neurons 
exposed to Tat + morphine (c, e) and TNP-ATP + Tat + morphine (d, f); TNP-ATP allays Tat 
and/or morphine induced dendritic injury as denoted by reduced varicosities (d, f).  All images c-
f are at the same magnification; MAP2 (green immunofluorescence) and Hoechst counterstained 
nuclei (blue fluorescence). 
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Tat and Morphine exposure increases extracellular ATP levels  

ATP levels were measured in conditioned media to determine whether the endogenous 

ligand for the P2X receptors was elevated in response to opioid or HIV-1 protein treatment alone 

and in combination.  Following 30 min incubation, Tat and morphine alone, or in combination, 

increased ATP levels when compared with controls (Fig. 16).  At the next time-point (1 h), only 

Tat alone, and morphine and Tat in combination, continued to cause significant elevation in ATP.  

Finally, at the 2 h time point only combined Tat and morphine treatment resulted in significant 

increases in extracellular ATP levels (Fig. 16). 
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Figure 16. Tat and/or morphine administration increased ATP levels in medium from 
neuron-glia co-cultures.  Tat and/or morphine markedly elevated ATP levels at 30 min, while 
sustained increases, were seen at 1 h following Tat ± morphine exposure, but not with morphine 
alone.  Although combined treatment with Tat and morphine tended to increase ATP levels 
compared to Tat or morphine exposure alone, the effect was not significant. Tat alone 
significantly increases ATP levels at 2 h.  Data represent the mean ± SEM from n =6 
experiments A one-way ANOVA was performed followed by Duncans post hoc test (*p <0.05 vs. 
controls at the same time). 
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ATP and combined Tat and morphine-dependent increases in [Ca2+]i are attenuated by a 

broad-acting P2X receptor antagonist 

 ATP, the natural ligand for P2X receptors, caused marked increases in intracellular 

calcium concentration ([Ca2+]i) in neurons.  Baseline [Ca2+]i levels were established in neurons 

for 2 min prior to Tat/drug treatments.  Neurons were exposed to increasing concentrations of 

ATP (10 nM, 100 nM, 1 µM, 10 µM, and 100 µM) at 2 min intervals.  ATP caused 

concentration-dependent increases in the fura-2 340/380-nm excitation ratio indicative of rises in 

[Ca2+]i (Fig. 17). Elevations were seen with exposure to 1 µM ATP, with significant increases 

occurring at both 10 and 100 µM concentrations.  We also found that treatment with morphine 

and Tat elevates the fura-2 340/380 ratio (Fig. 18).  After establishing baseline levels, morphine 

was applied at 2 min and Tat was added at 5 min.  The order of application was switched in a 

second group (data not shown).  Similar results were obtained irrespective of whether morphine 

or Tat was given first, with the rise in [Ca2+]i becoming significant at approximately 6 min (about 

1 min after the last compound was administered).  More interestingly, pretreatment with TNP-

ATP prevented [Ca2+]i increases caused by either ATP or Tat + morphine co-stimulation. 
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Figure 17.  ATP elicited concentration-dependent increases in [Ca2+]i. Neuron-glia co-
cultures were treated cumulatively with increasing concentrations of ATP (at 2 min intervals).  
Despite some tendency for [Ca2+]i to increase after applying 1 µM ATP, significant increases are 
not evident until 10 µM ATP is applied.  Data represent the mean ± SEM from n =3 experiments 
A one-way repeated measures ANOVA was performed followed by Duncans post hoc test  (*p 
<0.05 vs. control and TNP-ATP pretreated cells). 
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Figure 18. TNP-ATP attenuated increases in neuronal [Ca2+]i caused by combined Tat and 
morphine exposure.  Striatal neuron-glia co-cultures were treated with morphine at 2 min and 
Tat at 5 min. Images were taken at 1 s (0–3 min and 5–6 min) or at 30 s (3 to 5 min and 6–10 
min) intervals.  Significant rises in [Ca2+]i were seen after 6 min of continuous exposure to 
combined morphine and Tat, and were significantly attenuated by pretreatment with TNP-ATP 
(300 nM).  Data represent the mean ± SEM from n =3 experiments. A one-way repeated 
measures ANOVA was performed followed by Duncans post hoc test   (#p <0.05 vs. control and 
TNP-ATP pretreated cells). 
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P2X1, P2X3, and P2X7 receptor subtypes are not involved in HIV-1 Tat or morphine related 

neurotoxicity 

 To determine whether other P2X receptors are involved in the response to Tat and/or 

morphine, the potential role of P2X1, P2X3, and P2X7 receptor subtypes in HIV and opioid-

related neurotoxicity was explored using selective antagonists.  As in the initial viability studies, 

morphine (with the exception of Fig. 19e where p = 0.055), Tat, or combined morphine and Tat 

± naloxone, significantly decreased neuron survival as compared with control cells.  In contrast 

to the initial experiments with TNP-ATP, none of the selective antagonists for P2X1 (NF499) 

(Fig. 19a-b), P2X3 (A-31749) (Fig. 19c-d), or P2X7 (BBG) (Fig. 19e-f) receptor subtypes 

prevented morphine and/or Tat-induced neurotoxicity (Fig. 19).  Selective agonists for individual 

P2X receptor subtypes were used to further assess the potential neurotoxic role of these receptors 

and to confirm and extend the findings using selective P2X receptor antagonists when possible.  

The P2X receptor agonists tested were αβMe-ATP, which is selective for both P2X1 and P2X3 

receptors, and Bz-ATP, which is selective for the P2X7 receptor. P2X1/P2X3 receptor activation 

appeared to be marginally neurotoxic; causing significant neuronal losses by 72 h in some 

experiments (Fig 19a), but only partial reductions in neuronal survival that were not statistically 

significant when repeated in another set of experiments (Fig. 19c).  To ascertain whether the 

marginal neurotoxicity might be due to opposing actions of αβMe-ATP at P2X1 and P2X3 

receptors, the effects αβMe-ATP were challenged with P2X1 and P2X3 receptor antagonists (Fig. 

19a,d).  Interestingly, αβMe-ATP induced neurotoxicity was not evident with P2X1 receptor 

blockade (Fig. 19b), but caused significant reduction in survival despite P2X3 receptor blockade 

(Fig. 19d), suggesting P2X1 receptor activation might impart modest neurotoxicity.  However, 

because the effects of αβMe-ATP were inconsistent and the P2X1 antagonists only marginally 
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decreased the neuronal vulnerability, these results are inconclusive.  Unlike P2X1 receptors, 

P2X7 activation was highly neurotoxic (Fig. 19e) and the Bz-ATP-induced neuronal losses were 

completely blocked by selective P2X7 blockade (Fig. 19f).  Importantly, despite the suggestion 

that P2X1 or P2X7 receptor subtypes may affect striatal neuronal viability, as reported in the 

preceding paragraph, these receptor subtypes do not mediate the neurotoxic effects of HIV-1 Tat 

and/or morphine (Fig. 19b,d,f). 
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Figure 19. Selective antagonists for P2X1, P2X3, and P2X7 subtypes do not block Tat + 
morphine induced neurotoxicity (a–f).  Striatal neuron-glia co-cultures treated with Tat, 
morphine, Tat + morphine, and Tat + morphine + naloxone exhibited significant neuronal death 
compared to controls (a, c, e). Tat and/or morphine-induced neurotoxicity was not prevented by 
administering P2X1 (NF499) (300 nM), P2X3 (A-31749) (1 µM), and P2X7 (BBG) (1 µM) 
antagonists; while NF499, A-31749, and BBG alone had no effect on neuronal survival (b, d, f). 
All data represent the mean ± SEM from n =4 experiments. A one-way repeated measures 
ANOVA was performed followed by Duncans post hoc test (*p <0.05 vs. controls, #p <0.05 vs. 
Tat, $p <0.05 vs. morphine, δp <0.05 vs. Tat + morphine + naloxone, §p <0.05 vs. BzATP). 
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Discussion 

Our findings provide evidence that the P2X receptor family mediates key aspects of Tat 

or morphine induced neurotoxicity. Pharmacological intervention with TNP-ATP indicated P2X 

receptor family involvement in neuronal death due to Tat or morphine treatment, increases in 

neuronal [Ca2+]i, and reductions in dendritic length. Moreover, findings that Tat or morphine 

increase extracellular ATP levels, and that administration of exogenous ATP can mimic 

morphine’s and/or Tat’s effects provides further support that ATP acts as a critical intermediate 

in the neurotoxic actions of HIV-1, as well as those of morphine. Furthermore, recent studies 

demonstrate that levels of extracellular ATP are increased by HIV infection and are reportedly 

necessary for HIV replication (Hazleton et al., 2012). Interestingly, in contrast with TNP-ATP 

(P2X1-7 antagonist), the selective blockade of P2X1-3 & 5-7 by PPADS (Gum et al., 2011) was 

inherently neurotoxic—implying a differential involvement of the P2X4 receptor subtype, or 

perhaps multiple P2X subtypes, in influencing striatal neuron viability. Finally, unlike TNP-ATP, 

the selective blockade of P2X1, P2X3, or P2X7 receptors was not able to prevent Tat or morphine 

neurotoxicity, further supporting our hypothesis that the neurotoxicity is selectively occurring 

through the activation of P2X4 receptors. Our findings strongly support P2X receptor mediation 

of these events, and circumstantially support a role for the activation of P2X4 receptors in these 

events. Furthermore, we speculate that the data suggest that one or more P2X receptors may be 

potential novel therapeutic targets for use in the prevention of HAND.  

 

Our current mechanistic model proposes that morphine and/or Tat cause excess levels of 

extracellular ATP, which activates P2X4 receptors (expressed by subpopulations of striatal 

neurons and glia) resulting in abnormally high levels of [Ca2+]i and neuronal injury including 

decreased dendritic complexity and increased neuronal death. The time difference to get 
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increases in [Ca2+]i by direct application of ATP versus Tat + morphine also supports that 

indirect mechanisms lead to this effect, which makes sense if ATP release has to occur first. 

Addition of apyrase (enzyme that causes hydrolysis of ATP) to groups treated with Tat and/or 

morphine could be useful in future experiments to more directly assess the role of ATP release.   

 

As determined in the present study, P2X4 receptors appear to be widely expressed by 

neurons and microglia in the striatum.  Moreover, prior studies indicate that astroglia (Kukley et 

al., 2001; Ashour and Deuchars, 2004) express P2X4 receptors, including increased levels of 

expression by astrocytes in striatal lesions caused by 6-hydroxydopamine (Amadio et al., 2007). 

Collectively, the findings suggest that P2X4 receptors may be pivotal in coordinating ATP-

directed, bidirectional, glial-to-neuronal communication among neurons, microglia, and 

astrocytes.   

 

Our non-selective P2X antagonist, TNP-ATP, provides strong evidence that the cation-

permeable P2X subfamily of receptors mediates Tat and/or morphine neurotoxicity. While we 

cannot point to a specific P2X receptor from data obtained in these experiments, one thing to 

keep in mind is that TNP-ATP differs markedly in its affinity for different P2X receptor subtypes 

(Virginio et al., 1998; Coddou et al., 2011). Prior studies have evaluated human and rat P2X 

receptors; however, comparable studies have not been done in the mouse P2X receptor family. 

Yet, based on published information, we believe that the 300 nM TNP-ATP concentration used 

in most of our studies is likely to completely block P2X1, P2X3, P2X2/3 and P2X4 receptor 

populations and markedly attenuate P2X2 receptor activity (Dunn et al., 2000; Ma et al., 2004), 

while failing to significantly antagonize P2X7 receptors, although others have used 
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concentrations greater than 300 nM TNP-ATP to examine P2X actions (Guo et al., 2007; Solini 

et al., 2007). By contrast at 100 nM, TNP-ATP fails to block or only partially blocks P2X2 and 

P2X4 receptors, while continuing to preferentially block P2X1, P2X3, and P2X2/3 receptor 

subtypes, which have a lower affinity for TNP-ATP (Virginio et al., 1998). Importantly, we 

found 300 nM, but not 100 nM, TNP-ATP sufficient to prevent ATP, and morphine and/or Tat 

neurotoxicity in the neuron survival assay.  We also found 300 nM TNP-ATP was able to fully 

prevent the Ca2+ destabilizing or neurotoxic effects of Tat and/or morphine in our system. Lastly, 

it should be noted that the IC50 values for P2X5 and P2X6 receptors have not been investigated, 

perhaps due to their reported inability to form functional homomeric ion channels in human cells 

(Collo et al., 1996). 

 

Measurement of extracellular ATP showed concentrations of ATP did not rise above 300 

nM, while low µM ATP (< 10 µM , except for in the case of P2X7)  (Lynch et al., 1999; Brône et 

al., 2007; Agboh et al., 2009) is needed to activate P2X receptors.  However, the actual 

concentration of ATP at the cell surface may be greatly diluted by the comparatively large 

volume of media that is present in cell culture wells.  For this reason, extrapolating actual ATP 

concentrations seen by cells from the ATP concentrations measured may not be appropriate in 

this assay.    

 

The use of more selective antagonists showed that P2X1, P2X3, and P2X7 receptor 

subtypes were not involved in HIV-1 or morphine related toxicity. While the absence of toxicity 

does not exclude the possibility of increased inflammation (Suzuki et al., 2011), heightened 

inflammation is generally associated with heightened neuronal injury in our cell culture model 
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(Zou et al., 2011; Podhaizer et al., 2012). Despite some evidence that P2X1 and P2X3 receptor 

subtypes are involved in neuroinflammation and neurodegeneration (Apolloni et al., 2009), we 

did not see evidence for a role of these P2X receptor subtypes in the modulation of Tat or 

morphine neurotoxic interactions. In contrast to P2X1 and P2X3 receptors, the P2X7 receptor is 

known to regulate microglial function, and has been shown to modulate neuroinflammatory 

processes accompanying spinal cord injury, Alzheimer’s disease, Parkinson’s disease, 

inflammatory pain, neuropathic pain, trauma, multiple sclerosis, IL-1β signaling, and NF-κB 

signaling (Bai and Li, 2013). For the above reasons, we were surprised to find that P2X7 

receptors were not involved in the neurotoxic effects of Tat or morphine. One possible 

explanation is, with an EC50 > 30 µM (Jacobson et al., 2002; Hervás et al., 2005), P2X7 

receptors are not activated until ATP is present at very high concentrations. This is a much 

greater concentration than required to activate other P2X receptors, for which the EC50 for ATP 

is 1-10 µM (Lynch et al., 1999; Brône et al., 2007; Agboh et al., 2009). Accordingly, Tat and 

morphine may not release sufficient extracellular ATP to activate this subfamily of receptors in 

our primary cell culture model.  

 

HIV-1 Tat’s neurotoxic actions have been authoritatively reviewed elsewhere (Mocchetti 

et al., 2012). Tat has been shown to interact with several membrane receptors, such as integrins, 

low-density lipoprotein receptor related protein (LPR), and the NMDA receptor (Liu et al., 2000; 

Li et al., 2008). While the literature points to NMDA receptors as major regulators of calcium 

levels during HIV-1 Tat-induced neurotoxicity (Bonavia et al., 2001; Eugenin et al., 2007; Li et 

al., 2008; Buch et al., 2011), the present work suggests that P2X receptors may additionally 

contribute to the loss in neuronal [Ca2+]i homeostasis caused by Tat. Furthermore, P2X receptors 
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may affect AMPA and NMDA receptor levels and function (Gordon et al., 2005; Pankratov et al., 

2009; Tai et al., 2010; Baxter et al., 2011) which suggests P2X receptors on neurons and glia 

may be exerting control over [Ca2+]i through both direct and indirect effect.  This concept has 

also recently been alluded to elsewhere in the context of HIV neuroinflammation (Tovar-Y-

Romo et al., 2013). 

 

In contrast to HIV-1 Tat, morphine can be neuroprotective (Zou et al., 2011) or 

neurotoxic (Hu et al., 2002; Iglesias et al., 2003; Lim et al., 2004), depending on the cell type 

and context (Zou et al., 2011). At the concentration and times tested in our primary mixed-glial 

and neuronal cell culture system, continuous morphine exposure was typically neurotoxic. 

Importantly, P2X receptors have been shown to assist in regulating the actions of morphine (Tai 

et al., 2010; Zhou et al., 2010) with some evidence for the selective role of P2X4 receptors in 

mediating morphine-mediated microglial migration, and in the development of morphine 

tolerance (Horvath and DeLeo, 2009; Horvath et al., 2010). Compelling evidence has recently 

been provided demonstrating that morphine-dependent expression of P2X4 receptors by 

microglia is essential for the development of morphine-induced hyperalgesia (Ferrini et al., 

2013). Our study adds to the growing list of examples where MOR and P2X4 receptor systems 

may be functionally intertwined and is the first to show that P2X receptor subfamily plays a role 

in morphine-induced neuron injury. Although we have found that morphine can potentiate the 

neurotoxic effects of Tat (Zou et al., 2011), and postulated that P2X receptors might mediate the 

synergistic interaction, nothing can be inferred about a potential role of P2X receptors in the 

interaction per se since P2X blockade ameliorated the cytotoxic effects of both morphine and Tat 

alone.  



www.manaraa.com

	  

65	  
	  

 

Thus, the findings provide evidence implicating P2X receptors, and circumstantial 

evidence for the P2X4 receptor in particular, in HIV-1 Tat or morphine related neurotoxicity in 

primary neuron mixed glial co-cultures from mouse striata. Our work also concurs with findings 

from another laboratory demonstrating that P2X receptors mediate increases in neuronal [Ca2+]i 

and the culling of dendritic spines in rat hippocampal neurons treated with supernatant from HIV 

infected monocytes (Tovar-Y-Romo et al., 2013). Although further work is needed to expand the 

understanding of the underlying molecular pathways associated with cation-permeable, ligand 

gated purinergic receptors, we propose that members of the P2X receptor subfamily may be 

valuable therapeutic targets for the treatment of neuroAIDS. 
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Chapter 3: Evidence that P2X4 receptor activation is necessary in Tat and/or morphine 
related neurotoxicity via cells from P2X4

-/-
  mice 

 
 

Introduction 

Since there are no selective agonists or antagonists for the P2X4 receptor, genetic 

manipulation of the receptor was an attractive strategy to complement pharmacological 

experiments in Chapter 2.  The laboratory of Dr. Yves DeKonick graciously provided initial 

P2X4
-/-

  mice breeding pairs. The generation of these mice has been previously described 

elsewhere (Sim et al., 2006a), and are described in more detail in the next chapter (Chapter 4) 

(Fig. 23). Primary cell cultures from P2X4
-/-

  mice were used to confirm a role for the P2X4 in Tat 

and morphine associated neurotoxicity.  Manipulations in combinations of WT or P2X4
-/-

   glia 

and/or neurons allowed us to investigate what role the P2X4 receptor may be playing through 

these different cell types as well.   
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Methods 
 

Experiments were conducted in accordance with procedures reviewed and approved by 

the Virginia Commonwealth University Institutional Animal Care and Use Committee and 

conform to Association for Assessment and Accreditation of Laboratory Animal Care guidelines. 

 

Cell culture 

Mixed glial bed layer preparation  

Striatal mixed glial cultures were prepared from P0-P2 C57BL/6J (Jackson Laboratories, 

Bar Harbor, ME) or P2X4KO mouse pups. Striata were dissected, minced, and incubated with 

trypsin (2.5 mg/ml; Sigma, St. Louis, MO) and DNase (0.015 mg/ml; Sigma) in 10 mL of 

Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen, Carlsbad, CA) with 25 µM 

glutamate (30 min, 37 °C). Tissue was then triturated, resuspended in 10 ml glial maintenance 

medium made of DMEM with 10% defined fetal bovine serum (Hyclone, Logan, UT), and cells 

were filtered twice through 70 µm pore nylon mesh. Cells were plated onto 24-well plates at a 

density of 3×10^5 per well and maintained in media that contained 10 % serum.  Medium was 

changed 24 h after being plated and then every 2–3 days afterwards. Glia were allowed to reach 

confluence, which took approximately 10 days.   

 

Co-culture with neurons 

Striatal neurons were prepared from E15-E16 C57BL/6J (Jackson Laboratories) or P2X4 

KO mouse embryos.  Striata were dissected, minced, and incubated with trypsin (2.5 mg/ml) and 
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DNase (0.015 mg/ml) in 10 mL of Neurobasal medium supplemented with B27 (Invitrogen) and 

0.5 mM L-glutamine (Invitrogen) (30 min, 37 °C). Tissue was then triturated, resuspended in 10 

ml of supplemented Neurobasal medium and cells were filtered twice through 70 µm pore nylon 

mesh. Neurons were placed on top of a confluent mixed glial bed layer at a density of 0.8–

1.0×105 cells per well. Neuron-glia co-cultures were maintained in complete Neurobasal medium 

and allowed to mature for about 5 days prior to start of the experiments, with media exchanged 

24 h after neurons were plated and then every 2–3 days. Our mixed-glia cultures have been 

previously characterized to contain approximately 91 % astrocytes and 8 % microglia (Zou et al., 

2011). 

 

Assessment of neuron survival  

As previously described (Suzuki et al., 2011), a microscope (Zeiss Axio Observer Z.1) 

with environmental chamber (PeCon GmbH, Erbach, Germany) and a computer-controlled, x, y 

axis stage encoder was used to track individual neurons over time (Zeiss AxioVision 4.6 

software; Mark&Find, and Time- Lapse modules). Cultured neurons within multiple microscopic 

fields were randomly selected prior to the addition of drug and HIV-1 Tat treatments. Time-lapse 

images were taken every 30 min for 72 h. Medium was not changed during the experiment. 

Approximately 30 healthy neurons with well-defined dendritic arbors and single axons were 

followed for individual treatment groups in each experiment using phase-contrast microscopy 

(40× magnification). Neuron death was recorded upon collapse and fragmentation of the cell 

body, and has been verified previously with ethidium homodimer staining (Buch et al., 2007). 
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Data are presented as the percentage of surviving neurons relative to cells present at the onset of 

the experiment (0 h); experiments were repeated at least n =4 times. 

 

Statistics  

For all time-lapse experiments a two-way repeated measures ANOVA was used. If 

significant overall differences were detected by ANOVA, Duncan’s post hoc test was performed 

to assess intergroup differences. A p-value less than 0.05 was considered significant (Statistica; 

StatSoft, Tulsa, OK). 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

	  

70	  
	  

Results 

 

Presence of P2X4 receptors on glia are necessary to cause Tat and morphine related neuron 

death   

To examine whether activation of P2X4 receptors on neurons or on glia is responsible for 

the Tat and morphine related neurotoxicity seen in our cell culture model, we treated WT 

neurons placed on top of P2X4
-/-

  glia and compared with the same treatments in co-cultures with 

both WT glia and neurons. As in previous experiments with groups containing both WT glia and 

neurons, Tat, morphine, and ATP treatment alone caused a significant decrease in neuron 

survival, where Tat + morphine was significantly more toxic than either treatment alone (Fig. 

20a).  In co-cultures where glia did not express the P2X4 receptor, toxicity caused by Tat and/or 

morphine treatment was completely prevented, whether given alone or in combination.  ATP 

toxicity was also prevented in these co-cultures (Fig. 20b). 
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Figure 20. Glia from P2X4
-/- mice confirm the receptors on this cell type are critical for Tat- 

or morphine-induced neuronal toxicity (a-b).  Cells treated with Tat, morphine, Tat + 
morphine, and ATP were all significantly different than the control group cells.  Tat + morphine 
treated cells were also significantly different than Tat or morphine alone (a).  All KO groups 
were significantly different from their corresponding WT group except the KO control (b). 
Graphs represent N=4 experiments. A two-way repeated measures ANOVA was performed 
followed by Duncans post hoc test (*P < 0.05 vs. WT control, # P < 0.05 vs. WT Tat, δ P < 0.05 
vs. WT Morphine, $ P < 0.05 vs. WT T+M, § P < 0.05 vs. corresponding WT group (except for 
KO control)). 
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P2X4 KO on both glia and neurons prevents Tat and morphine toxicity, however toxicity is 

increased in KO controls verses WT controls   

In order to investigate the role of the P2X4 receptor in Tat and morphine mediated 

toxicity P2X4KO co-cultures were compared with WT/C57BL6J primary co-cultures. Both 

groups were treated with Tat and morphine alone, as well as in combination, and with ATP.   All 

treatments caused significant neuron death in WT cells in comparison with WT controls.  As in 

WT cultures from ICR mice (Chapter 2) significantly more cell death was seen with Tat and 

morphine in combination versus when the two were given alone (Fig. 21a).  Cells from P2X4
-/- 

mice that were treated with both Tat and morphine were no longer susceptible to neuronal death.  

ATP and morphine alone treatment also no longer caused significant neuronal death in cells from 

KO mice.  However, untreated control KO cells exhibited significantly more death than WT 

controls.  This same toxicity was seen in the KO Tat treated cells, but this group was not 

significantly different than KO control cells (Fig. 21b).    
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Figure 21. Cells from P2X4
-/- mice confirm receptors critical role in Tat or morphine 

neuronal toxicity (a-b).  Cells treated with Tat, morphine, Tat + morphine, and ATP were all 
significantly different than the control group cells.  Tat + morphine treated cells were also 
significantly different than Tat or morphine alone (a).  All KO groups were significantly 
different from their corresponding WT group. KO Tat treated cells were also significantly 
different than WT control cells (but not different than KO control cells). Also note that KO T+M 
is significantly different than both KO control and KO Tat. (b). Graphs represent N=4 
experiments. A two-way repeated measures ANOVA was performed followed by Duncans post 
hoc test (*P < 0.05 vs. WT control, # P < 0.05 vs. WT Tat, δ P < 0.05 vs. WT Morph, & P < 0.05 
vs. WT T+M, KO control, KO Tat, § P < 0.05 vs. WT ATP). 
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P2X4
-/- on neurons prevented combined Tat + morphine toxicity but did not prevent 

toxicity when Tat or morphine were administered alone 

To investigate what role P2X4 receptors that are present on neurons play in Tat- and 

morphine-related neurotoxicity, we compared all WT co-cultures with co-cultures of glia from 

WT mice and neurons from P2X4
-/- mice  (Fig. 22).  As shown in previous experiments, Tat and 

morphine treatment alone caused significant neuronal death, with significantly greater cell death 

from combination treatment.  ATP treatment, our positive control, also caused a significant 

increase in cell death (Fig. 22a).  In co-cultures containing KO neurons with WT glia, we did not 

see prevention of the neuron death induced by Tat, morphine, or ATP as we saw in co-cultures 

containing P2X4
-/- glia and WT neurons.  However, we were surprised to see that toxicity from 

combined Tat and morphine treatments was prevented (Fig. 22b). We also observed increased 

toxicity of KO control versus WT control neurons under these conditions, as was seen when the 

receptor was knocked out on both neurons and glia in Fig. 21. Finally, Tat treatment also caused 

significantly more neuronal death in groups that contained neurons from P2X4
-/- mice as 

compared to cultures with WT neurons and WT glia. 
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Figure 22. Neurons from P2X4 KO are not protected from Tat or morphine treatment 
alone but are protected when Tat and morphine are given in combination (a-b).  Cells 
treated with Tat, morphine, Tat + morphine, Tat + morphine + naloxone and ATP were all 
significantly different than the control group cells.  Tat + morphine treated cells were also 
significantly different than Tat or morphine alone (a).  KO groups, control, Tat, and Tat + 
morphine, were significantly different from their corresponding WT group.  KO cells treated 
with Tat + morphine were not significantly different that WT Controls.  Morphine and ATP 
treated cells were different from WT controls but not from WT cells that received the same 
treatment (b). Graphs represent N=4 experiments. A two-way repeated measures ANOVA was 
performed followed by Duncans post hoc test  (*P < 0.05 vs. WT Control, # P < 0.05 vs. WT Tat, 
δ P < 0.05 vs. WT Morphine, § P < 0.05 vs. WT T+M, αP < 0.05 vs. WT ATP, &P < 0.05 vs. KO 
Control). 
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Discussion 

Time-lapse experiments with cells from knockout animals show that P2X4 receptors on 

glia are necessary for Tat and morphine neurotoxicity in our cell culture model.  However, the 

role for the receptor on neurons in Tat + morphine induced neurotoxicity is not as clear, mainly 

due to decreased neuronal survival under control conditions.  Although more experiments 

investigating P2X4 receptors on neurons are warranted, differences at baseline suggest they may 

play a neuroprotective role and participate in homeostatic cellular processes.    

In order to better understand the role that P2X4 receptors may be having on glia verses 

neurons, we mixed cells from WT and KO mice in our co-culture model and compared them to 

all WT cells.  The first combination we tried was P2X4
-/- glia co-cultured with WT neurons. 

Excitingly, cultures with P2X4
-/- glia completely prevented combination Tat and morphine 

toxicity as well Tat and morphine toxicity separately. Implying the presence of P2X4 receptors 

on glia in particular is necessary for Tat- and/or morphine-induced neurotoxicity.  These results 

very closely resembled blockade of Tat and morphine neurotoxicity by TNP-ATP seen in Fig. 12 

(Chapter 2), providing circumstantial evidence that TNP-ATP may be having its effects by 

inhibiting P2X4 receptors on glia as well.    

When the P2X4 receptor is not present on both glia and neurons, results suggest a more 

complex role for P2X4 receptors expressed on striatal neurons.  Combined Tat + morphine 

neurotoxicity was blocked in P2X4
-/- cells, further confirming the presence of these receptors on 

glia is critical for Tat and morphine related neurotoxicity but also not ruling out a role for the 

receptor on the neuron.  However, in these same experiments control P2X4
-/- cells underwent 

significantly more neuronal death than WT control cells, suggesting P2X4 receptors normally 
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play an important and perhaps neuroprotective role.  Data suggest that the neurotoxicity is 

coming from the P2X4
-/- neurons and not the P2X4

-/- glia, since we don’t see neurotoxicity under 

control conditions in experiments where only P2X4
-/- glia are used.  P2X4

-/- cells treated with Tat 

also exhibited increased toxicity when compared to WT controls (but were not different than KO 

controls).  However, we do not see this same effect in the P2X4 KO Tat + morphine group, 

suggesting that Tat may elicit activation of different signaling pathways when given by itself as 

compared to when given in the presence of morphine.  

In our last condition, where P2X4
-/-

 neurons and WT glia were compared to WT neuron 

and glia cultures, further evidence is given that Tat, morphine, and Tat + morphine may activate 

distinct cellular pathways that are differentially mediated by P2X4 receptors on neurons.  

Surprisingly, Tat- and morphine-induced neurotoxicity was still prevented, even through WT 

glia were present. This is not what we expected after switching WT glia for P2X4-/- glia and 

observing complete prevention of Tat- and/or morphine-induced neurotoxicity, which seemingly 

confirmed our hypothesis that P2X4 actions on glia in particular lead to Tat- and/or morphine-

induced neurotoxicity.  Although these data do not disprove our hypothesis, they do suggest that 

it is not the complete story.  Since neurotoxicity was also prevented when P2X4
-/-

 neurons were 

switched for WT neurons, it appears that having the receptor present on both cell types is 

necessary for Tat and morphine combined neurotoxicity.  Implying that neuron-glia interactions, 

which involve activation of P2X4 receptors on one or more cell types, play a complex role in the 

balance between neurotoxic and neuroprotective outcomes in response to Tat and morphine 

combined treatment.   

 However, in the case of Tat or morphine treatment alone neurotoxicity was not 

prevented. In this experiment we cannot determine the role neuronal P2X4 receptors play in 
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morphine-induced neurotoxicity.  While there is no difference between morphine-induced 

neurotoxicity in all WT co-cultures versus co-cultures where P2X4
-/-

 neurons have been used 

instead of WT neurons, which would imply they play no role; there was also no difference 

between P2X4 KO morphine and P2X4 KO control groups.  Neurotoxicity due to baseline 

differences and morphine treatment cannot be differentiated here.   

 

Tat toxicity alone was also not prevented, but in this case the amount of neuron death was 

actually significantly more than in cultures with P2X4
-/-

  neurons as compared to those with WT 

neurons. The increased Tat toxicity may be partially explained due to decreased neuron survival 

rates to start with in control cells, as normal Tat toxicity may be combining with baseline levels.  

Data implies this additional Tat toxicity is due to lack of the P2X4 receptor presence on the 

neuron since we don’t see this effect in co-cultures containing only P2X4
-/-

  glia.  However, 

another interesting point is that when P2X4
-/-

  neurons are co-cultured with P2X4
-/-

  glia this 

additional Tat toxicity is also not present, giving evidence that glia may provide protection 

against Tat toxicity is in the later situation.     

  

Overall, this experiment gave evidence for an unexpected yet important role for the P2X4 

receptor on neurons that may differ from one treatment condition to another and suggests that a 

signaling pathway shift may occur in response to combined Tat and morphine treatment, as 

opposed to the recruitment of multiple pathways at once.   Finally, data from Tat treatment alone 

in these experiments suggest that neuronal death is regulated in a complex way, where multiple 

factors may affect the balance between neurotoxicity and neuroprotection.  
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 In conclusion, our in vitro model confirms P2X4 receptors on glia are necessary 

for Tat- and/ morphine-induced neuronal toxicity.  However, we cannot rule out that P2X4 

receptors on neurons may also modulate Tat and morphine related neurotoxic actions.  

Differences in baseline neurotoxicity in co-cultures containing P2X4
-/-

  neurons interfered with 

our ability to asses the role of P2X4 receptors on neurons.  One possible explanation for baseline 

differences is that these cells have been shown to exhibit differences in NMDA and AMPA 

subunit compositions (Wyatt et al., 2013);  however, further characterization has not yet been 

performed and is warranted.  At this time further experiments are necessary to better describe the 

role of neuronal P2X4 receptors in Tat- and/or morphine- induced neurotoxicity.     
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Chapter 4: Evidence that P2X4 receptor presence modulates Tat and/or morphine related 

neurotoxicity via in vivo studies with P2X4 KO mice 

 
Introduction 
 

Our next goal was to investigate the function of the P2X4 receptor and its ability to 

modulate Tat and morphine interactions in a whole animal model. Primary cell culture 

experiments provide for quicker readouts when compared with in vivo experiments and the 

ability to focus on particular brain regions; however, these cells are de-afferented from other 

parts of the brain as well as from peripheral input. For these reasons it is important to validate the 

translatability of new findings in cell culture to in vivo models.  Although the Tat transgenic 

mice have previously been a valuable tool to investigate Tat and morphine interactions in our lab, 

due to the lack of availability of selective P2X4 antagonists and agonists, we have chosen to 

work with P2X4
-/- mice and perform intrastriatal injections of Tat instead.    

 
As mentioned in the Chapter 1, the basal ganglia is an area of the brain that is targeted by 

HIV infection.  The major input nucleus of the basal ganglia is the striatum (Smith et al., 1994; 

Kincaid et al., 1998; Bolam et al., 2000) a brain area made of 95% GABAergic neurons that can 

be divided into two classes, D1  and D2 (the type of dopamine receptors that are expressed on 

these neurons) (Kreitzer, 2009). These two populations are thought to promote the execution of 

motor programs, and control voluntary movement (Gerfen and Surmeier, 2011; Ralph J A Oude 

Ophuis, 2014).  As such, we chose measurement of grip strength and locomotor activity to assess 

behaviors that may be impacted by changes in striatal function.   

  

In order to directly assess striatal inflammation we used the markers Iba1 (microglia 
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marker) and 3NT (marker associated with the generation of reactive oxygen species).  This 

allowed us to investigate both changes in microglia number as well as whether or not microglia 

may be activated. 
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Methods 
 
 

Animals   

3-6 month old male mice were used for all surgeries. Animals weighed approximately 25-

30g.  C57BL/6J mice were used as WT controls to compare with P2X4KO mice, which are on 

the same C57BL/6J background as the transgenic micw. WT C57BL/6J breeding pairs were 

obtained from Jackson Labs (Bar Harbor, Maine) and P2X4 KO mice breeding pairs were 

obtained from the Dr. Yves de Koninck laboratory at Laval University (Quebec, Canada). The 

genotype of the original breeding pairs received was verified via PCR (Fig. 24).  More specific 

details of the P2X4 gene deletion in these mice has been previously described elsewhere (Sim et 

al., 2006a); however, in brief these mice were made by a targeting vector that was constructed 

via the insertion of a LacZ neomycin cassette, between a BgIII site located 30 bases upstream of 

P2X4-initiating methionine and a BamHI site 172 bases downstream of the first exon/intron 

boundary. This resulted in a 337 base deletion encompassing the first exon (including P2X4-

initiating methionine) and 172 bases of the downstream intron (See Fig. 23).  Animal colonies 

were maintained in the vivarium facilities at Virginia Commonwealth University after initial 

breeding pairs were obtained.  Experiments were conducted in accordance with procedures 

reviewed and approved by the Virginia Commonwealth University Institutional Animal Care and 

Use Committee and conform to Association for Assessment and Accreditation of Laboratory 

Animal Care guidelines. 
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Figure 23. Generation of P2X4 KO mice. Boxes represent open reading frames; LacZ gene 
insertion occurred upstream of the P2X4-initiating methionine resulting in the deletion of the 
entire coding region of exon 1 and of the first exon–intron splice site. Note abbreviations: TK, 
Thymidine kinase; NEO, neomycin; Ex1, exon1; B, BamH1; Bg, BgIII; S, SacI; X, XbaI (Sim et 
al., 2006b). 
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PCR detection of P2X4 mRNA in KO and WT mice  

Reverse transcription PCR (RT-PCR) was performed to confirm expression of P2X4 mRNA in 

WT C57BL/6J vs. P2X4 KO mice.  Tail clips were taken from animals and total RNA was 

isolated using DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA) as per the manufacturer’s 

protocol.  The final elution volume was 200 µl.  2 µl of final product was using along with Taq 

Polymerase, dNTP were purchased from Bioline (Bioline, Taunton, MA).  PCR was performed 

to detect P2X4 mRNA expression using primers to recognize WT P2X4 mRNA (both sequences 

directed against Exon1) (forward 5’-GGTGGTGGCAGCGACAA and reverse – 

5’CCAATGACGTAAGCCAGGAT) and primers to recognize KO P2X4 mRNA (first sequence 

directed against small part of Exon 1 that remains and second sequence directed against LacZ 

gene) (forward – 5’CCAATGACGTAAGCCAGGAT and reverse 

5’AAACGCCGAGTTAACGCCAT).  2 µl of sample from WT C57BL/6J with no primers 

added was used as control.   Amplified products were analyzed on 2% agarose gels and 

visualized with ethidium bromide. 
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Figure 24.  PCR verifies genotype of P2X4 KO mice. No band is seen in the control (no 

primers are present), a band at 200 bps (Exon 1) is seen from the WT mRNA, and a band at 450 

bps (Exon 1 + LacZ gene) is seen from KO mRNA obtained from all 4 mice that were used to 

originally start the P2X4 KO mouse colony at VCU.     
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Animal Surgeries 

For all surgeries, mice were initially placed under anesthesia using isoflurane gas at 5% 

and then animals were placed on stereotaxic apparatus (Stoelting, Wood Dale, IL) where 

anesthesia was maintained with 3% isoflurane. Mice recovered from anesthesia under a warming 

lamp and were returned to their cages when they displayed normal activity.  Mice were 

euthanized at 5 days after intrastriatal Tat and/or systemic opiate exposure.  8 animals were 

included in each group.  Also it should be noted that mice that received combined Tat and opiate 

exposure where given additional warming time and received systemic sterile saline injections 

after surgery.  These measures were taken due to decreased survival rates observed in this 

treatment group as compared to the others.     

 

Intrastriatal Injections 

1 µL injections of either saline (control) or 25 µg (2 nmol) rTAT1-86 HIV-1 IIIB 

(ImmunoDX, Woburn, MA) were injected intrastriatally using a 30-gauge syringe (Hamilton, 

Reno, NV) under aseptic conditions.  Tat was received lyophilized and reconstituted in saline 

before injection. Striatal injections were made at the coordinates AP= +0.7 mm, ML = 2.0 mm 

and DV = -4.0 mm from bregma (Hof, 2000). The needle was stereotactically placed at the above 

coordinate over a 2 min period. A saline or Tat injection then took place over 1 min followed by 

a 1 min wait period in which the needle was allowed to remain in place before withdrawal to 

minimize Tat backflow along the needle tract as the syringe was then withdrawn (over 2 min).   
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Insertion of Time Release Pellets 

Continuous, time-release pelleted implants (NIDA, Rockville, MD) were used to 

administer vehicle (placebo implant), morphine (25 mg), and/or naltrexone (30 mg). Immediately 

after stereotaxic injection and while still under anesthesia pellets were implanted. Under aseptic 

conditions, the subscapular skin was lifted and a 3-mm incision made with a microscalpel. A 1.5 

cm deep pocket is created with forceps, placebo or opiate drug pellets are inserted, and the 

pocket closed with 3-4 sutures.  

 

Behavioral Assays: 

Before being euthanized on day 5, mice were first tested for locomotor activity, which 

was immediately followed by grip strength testing.  Animals were euthanized immediately after 

last behavioral test. 

 

Locomotor Activity 

To assess locomotor activity, mice were placed in clean plastic cages (28 x 16 cm) inside 

sound-attenuating chambers and total distance traveled was recorded for 10 min and analyzed by 

the ANY-maze (Stoelting, Wood Dale, IL) video tracking system.  Subjects were randomly 

assigned to testing boxes on test day. 
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Grip Strength 

Mice were tested on a computerized grip strength meter (Columbus Instruments, 

Columbus, OH), with a single digital force gauge.  Mice were gently pulled across horizontal 

platform with grip bars, where computer software analyzed the force as mice released their grip.  

Trials were repeated 3 times during each test session and average grip strength was recorded.  

The instrument automatically records grams-force applied, which was then divided by the 

animal’s body weight to account for possible strength differences due to weight.  Data are 

reported as force applied (g)/body weight (g). 

 

Tissue Handling and Immunohistochemistry 

Mice were deeply anesthetized with 5% isoflurane and euthanized by intracardiac 

perfusion with Zamboni’s modified phosphate buffered 4% paraformaldehyde. The brains were 

dissected and fixed for an additional 12 h before further processing. The forebrain, including the 

striatum, was serially sectioned (10 µm thick) in the coronal plane. To allow uniform penetration 

of the immunocytochemical reagents into 10 µm thick tissue sections, sections were 

permeabilized in 0.1 % Triton-X 100, 1% crystalline grade BSA (Calbiochem/EMD Millipore, 

Billerica, MA) in PBS, pH 7.2 for 1 hr and rinsed 3×20 min in PBS, pH 7.2. Tissue sections were 

then incubated in diluted primary antiserum for 1 hr in PBS, pH 7.2 with 1% crystalline grade 

BSA.  Iba1 (ionized calcium binding adapter molecule 1) was detected by anti-Iba1 (1:200; 

Wako Chemicals, Richmond, VA) and 3NT was detected by using nitrotyrosine antibody raised 

against 3-Nitrotyrosine (1:100; Santa Cruz Biotechnlogy, Santa Cruz, CA).  Primary antibodies 

were allowed to incubate overnight at 4°C and then washed 3 x 20 min in PBS, pH 7.2. 
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Immunoreactivity was visualized with appropriate secondary antibodies conjugated to Alexa 488 

or Alexa 596 (1:500 dilution; Molecular Probes, Eugene, OR). Striatal tissue sections were 

counterstained with Hoechst 33342, which labels all cell nuclei. 

 
 

Quantitative Microscopy 

An up-right fluorescent microscope (Zeiss Axio Imager D1) was used to systematically 

sample cells near (300 ± 100 µm) the site of Tat injection within the striatum. The injection 

epicenter was identified by pronounced Iba1 and 3NT immunoreactivity caused by needle 

insertion (Fig. 25).  Tissue sections were randomly assigned before analysis for cells to be 

sampled either to the left or right of the injection epicenter.  Microglia (Iba1 positive cells) and 

cells producing 3-nitrotyrosine (3NT positive cells) were counted.  3NT is a byproduct in the 

production of peroxynitrate, a ROS (reactive oxygen species), so its presence in Iba1 positive 

cells implies that these microglia are also in an activated state. Stereological analysis was not 

applied, because the non-uniform distribution of injected Tat makes it unrealistic to define a 

reference volume for the gradient of Tat within the striatum. Instead, the relative changes in the 

proportion of Iba1/3NT positive cells were determined from the total Hoechst-labeled cells. 

Because the introduction of a sterile syringe needle alone caused some glial changes along the 

needle tract as noted below, and may induce subtle injury/inflammatory changes elsewhere, 

treatment groups were always compared with vehicle-injected control values at 300 ± 100 µm 

from the injection epicenter.  Typically, 200–300 cells total were sampled and average values 

recorded for each animal. Data are reported as the mean ± SEM with 8 mice per group.  
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Figure 25. Needle track located in striatum of mouse.  Needle track mark, located in striatal 
tissue, could be identified by pronounced Iba1 (green) and 3NT (red) immunostaining that 
outlined the shape of a needle. Cells were counterstained with Hoescht in order to label nuclei 
(blue).   
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Statistics 

 A two-way ANOVA was used in all behavioral and quantitative microscopy assays. If 

significant overall differences were detected by ANOVA, Duncan’s post hoc test was performed 

to assess intergroup differences. A p-value less than 0.05 was considered significant (Statistica; 

StatSoft, Tulsa, OK). 
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Results 
 
 

Locomotor activity shows differences between P2X4 KO and WT mice when treated with 

both Tat and morphine 

Mice were given 10 min to move freely in a box that they had never been placed in 

before in order to test their baseline activity in a novel environment.  Tat treated mice did not 

differ from the control group animals.   Both WT and KO animals that received morphine moved 

significantly less during the time period than control animals, but since both genotypes display 

the same behavior P2X4 receptors do not play an important role in this outcome.  Interestingly 

P2X4 KO animals that received both morphine and Tat also moved significantly less than the 

WT control group, which was not exhibited by WT mice that received the same treatment. 

Although, WT Morphine +Tat mice did not perform significantly different when compared with 

WT Morphine mice (Fig. 26).    

 

Grip strength reveals baseline differences between P2X4 KO and WT mice, as well as 

between Tat treated groups 

Next we measured grip strength, where P2X4 KO control animals applied significantly 

more force than WT animals.  Also WT Tat mice applied less force when compared with WT 

control mice, and there was no difference between WT controls and P2X4 KO Tat treated mice 

(Fig. 27).  No significant changes were observed between other groups.   
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Figure 26.  Morphine treatment caused a significant decrease in locomotor activity in both 
WT and P2X4 KO mice, while Tat and morphine combination treatment caused a decrease 
in activity in only P2X4 KO mice.  Morphine treated WT and KO mice are both significantly 
different than WT controls but not different from each other.  KO mice treated with Morphine + 
Tat were both significantly different from WT control and WT Morphine + Tat treated animals.  
However, WT M+T was not different that WT Morphine.  Each group represents N=8 mice. A 
two-way ANOVA was performed followed by Duncans post hoc test  (*P < 0.05 vs. WT Control, 
δ P < 0.05 vs. WT Mor + Tat). 
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Figure 27. P2X4 KO control animals have increased grip strength compared to WT control 
animals, and WT Tat mice exhibit a decrease in grip strength. Control P2X4 KO mice had a 
significantly stronger grip than WT control mice.  WT mice that received Tat had a decreased 
ability to grip when compared with WT control mice, P2X4 KO Tat treated mice did not see this 
same decrease; however, WT and KO Tat treated mice were not significantly different than each 
other.  Each group represents N=8 mice. A two-way ANOVA was performed followed by 
Duncans post hoc test (*P < 0.05 vs. WT Control). 
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Changes in proportions of Iba1 and 3NT positive cells in P2X4 verses WT mice gave 

evidence for P2X4 receptor involvement in striatal neuroinflammation from Tat and/or 

morphine  

Immunohistochemistry was done in order to examine inflammation in striatal tissue in 

P2X4 KO versus WT mice (Fig. 28 - 29).  WT animals treated with morphine and Tat alone, as 

well as in combination, showed increases in the percentage of Iba1 positive cells.  These same 

increases were not seen in P2X4 KO mice that received the same treatments (Fig. 29a).  Implying 

that increases in the number of microglia present due to Tat and morphine treatment is dependent 

on the presence of P2X4 receptors.  The overall number of cells that were both 3NT and Iba1 

positive also increased due to Tat and morphine treatment alone, as well as in combination, 

implying increased amounts of activated microglia.  Increased 3NT immunoreactivity in P2X4 

KO mice was not observed given the same treatments, implying increases seen in WT animals in 

response to Tat and/or morphine treatment may be P2X4 dependent (Fig. 29b). There were no 

baseline differences between P2X4 KO and WT animals in either Iba1 or 3NT positive cells.   
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Figure 28.  P2X4 KO mice treated with Tat and morphine did not exhibit higher levels of 
colocalized Iba1 and 3NT immunostaining as compared to WT mice that received the same 
treatment (a-d). All sections were incubated with the primary antibodies Iba1 (green) and 3NT 
(red) and counterstained with Hoescht in order to label nuclei (blue).  Both tissues from WT and 
P2X4 KO mice show low levels of either Iba1 or 3NT staining (a-b).  In WT mice that were 
treated with both Tat and morphine noticeably more Iba1 and 3NT positive cells are present as 
compared to control mice (c).  In tissue from P2X4 KO mice that received both Tat and morphine, 
the amount of Iba1 staining looks similar to tissue from control mice.  3NT levels may be 
elevated (this was not quantified) but not on cells that are also Iba1 positive (d).  
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Figure 29.  WT mice exhibit increases in Iba1 and 3NT positive cells due to Tat and/or 
morphine treatment, which is not seen in P2X4 KO mice (a-b). WT Tat and WT morphine 
treated animals, as well as WT animals that received both morphine and Tat exhibited 
significantly higher percentages of Iba1 positive cells when compared with the percentage of 
Iba1 positive cell WT control striatal tissue.  Striatal tissue from P2X4 KO animals did not show 
increases in Iba1 positive cells when compared with WT controls due to any treatment (a).  
Increases in the percentage of 3NT positive (that were also Iba1 positive) cells were observed in 
striatal tissue sections from WT Tat, WT morphine, and WT morphine + Tat treated animals.  
KO mice did not show increases with the same treatments, which were significantly different 
from WT paired groups but not WT controls (b).  Percentages are based off of total number of 
cells present in the field as identified by Hoescht nuclei staining.  Graphs represent cells counted 
from N=8 mice. A two-way ANOVA was performed followed by Duncans post hoc test  (*P < 
0.05 vs. WT Control, **P < 0.001 vs. WT Control, ***P < 0.0001 vs. WT Control, # P < 0.05 vs. 
WT Tat, α P < 0.05 vs. WT Mor, δ P < 0.05 vs. WT Mor + Tat). 
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Discussion 
 

Overall, locomotor activity and grip strength assays showed little response to genotype 

differences. Animals that received time-released morphine pellets and saline intrastriatal 

injections exhibited less activity in the 10 minutes they had to explore a novel environment, but 

this effect was independent of geneotype.  While acute morphine exposure has been shown to 

have motor activating effects in mice on the C57BL/6J background (Castellano and Oliverio, 

1975), since the testing occurred on day 5 after the surgery, the mice had most likely already 

undergone tolerance to this effect.  Mice were only tested on day 5. When mice were observed 

on day 1 and day 2 after surgery the mice did appear to exhibit the typical increase in locomotor 

activity that has been seen by others (Castellano and Oliverio, 1975; Murphy et al., 2001); 

however, this effect was clearly not present on day 5. Decreases in activity were prevented when 

animals received the opioid antagonist naltrexone.  Since there was no difference between P2X4 

KO mice and WT mice the P2X4 receptor is not expected to play a role in the effect.   

 

Surprisingly, the decrease in motor activity due to morphine was not seen in WT mice 

receiving combined morphine and intrastriatal Tat injections.  Seemingly, Tat acts to negate the 

decrease in activity seen due to morphine, which is not what we would expect due to the fact 

HIV patients often suffer deficits in motor coordination (Woods et al., 2009).  Although, Tat has 

the ability to travel between cells and may be able to travel to sites other than where injected, the 

entire brain is unlikely to receive the same exposure to Tat as in HIV infected individuals.  

Accordingly, motor deficits in patients may not be exclusively regulated by the striatium, and 

this would not be surprising as other areas of the brain contribute to motor activity and are 

variably affected due to HIV infection.  Alternatively, much of the striatum may be spared, as we 
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did not inject bilaterally.  We do not understand the exact mechanism behind this result; however, 

one possibility is that Tat may illicit astrocytic calcium signaling waves that may start in the 

striatum but have their effects elsewhere (Burnstock, 2007). Another interesting outcome from 

this data set is that we do see decreased motor activity in P2X4 KO mice that are given morphine 

and Tat as compared with WT control animals and WT animals that also received Tat and 

morphine.  However, WT M+T was not different that WT morphine, so differences due to 

genotype remain inconclusive. 

 

Assessment of grip strength showed a different outcome than the locomotor activity 

results.  Regulation of these behaviors by different brain areas or brain circuitry could be a 

possible explanation for this. Locomotor activity can also involve modulation by the cortex, 

brainstem and spinal cord, whereas grip strength focuses on motor behaviors controlled by the 

extrapyramidal system (Misra et al., 2009).  Here we saw decreases in grip strength due to Tat 

treatment which may mean that striatal regulation of this behavior is more important than in 

locomotor activity. Afferent connections from other areas of the brain may have less of an 

impact as well when compared with locomotor assessment. This same difference due to Tat 

treatment was not seen in the P2X4 KO mice, but due to baseline differences between WT and 

KO control animals, we can not conclude these differences are solely based on changes in P2X4 

receptor function. Furthermore, there were no differences in either WT or P2X4 KO mice that 

were treated with either morphine alone or morphine and Tat in combination.  Although 

morphine has no effect on its own in this assay, it may counterbalance Tat effects when given in 

combination, as we no longer see decreased grip strength as with Tat alone.  
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It is difficult to draw clear conclusions based on the above behavioral outcomes, due to 

lack of effect (locomotor activity) and baseline differences (grip strength assay).  Furthermore 

these data do not support our hypothesis that P2X4 receptor activation is linked to Tat- and/or 

morphine-induced neurotoxicity. As in any global knockout model, compensatory mechanisms 

developed due to changes in P2X4 receptor levels may also be a factor, and differences in the 

grip strength assay between KO and WT control groups give evidence for this. Others have also 

shown evidence for baseline differences between P2X4 KO and WT mice in several sensorimotor 

assays including, startle reflex (Bortolato et al., 2012), tactile sensitivity,  and social interaction; 

however, differences were not observed in locomotor activity (as was also seen here), and 

anxiety-like behaviors (tested in elevated plus maze and light dark box) (Wyatt et al., 2013). 

Repeating of experiments or use of other behavioral assays may be useful to uncover the role of 

the P2X4 receptor in this model.  Another possibility would be to use a conditional P2X4 KO 

mouse model in order to better avoid compensatory changes in the animal. 

 

Immunohistochemistry with inflammatory markers, Iba1 and 3NT, gave more 

straightforward results. These data give evidence that P2X4 receptors play an important role in 

Tat and/or morphine microglia mediated striatal inflammation.  However, only 3NT cells that 

were also Iba1 positive were counted in 3NT immunostaining analysis.  Accordingly we cannot 

rule out the possibility that other cells types may exhibit inflammation in P2X4 KO mice that 

were treated with Tat and/or morphine. Results support conclusions made from in vitro data 

presented in Chapters 2 and 3 that support the hypothesis that Tat- and/or morphine-induced 

inflammatory outcome measures are mediated by striatal glia via P2X4 receptors. Further 

analysis of neuron viability along with use of neuronal makers would be needed confirm Tat- 
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and/or morphine-induced effects in co-cultures containing P2X4
-/- neurons.  
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Chapter 5: P2X Receptor Expression in Brain Tissue from HIV Infected Individuals 
 
 

Introduction 

To address the potential role of P2XR family members in neuroAIDS, we used gene 

arrays to examine individual subtype differences among CNS tissues obtained from HIV-

negative, HIV-positive, HIV-positive with neurocognitive impairment, and HIV-

positive/impaired with encephalitis (HIVE) individuals.  Recent findings demonstrate P2X7R 

activation is directly neurotoxic (Sorrell and Hauser, 2014), and unpublished findings in striatal 

neural cells from P2X4R-null mice (in preparation) show that P2X4Rs mediate HIV-1 Tat-

induced neurotoxicity in vitro.  Together, this led us to explore the role of P2X4R and P2X7R, as 

well as other purinergic receptor subtypes, in the HIV-infected human brain.  We further 

performed qRT-PCR validation and immunohistochemical localization using a subset of the 

same human tissue samples from the arrays.  
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Methods 
 
 

Human brain tissue  

Human brain tissue was obtained from the National NeuroAIDS Tissue Consortium 

(NNTC) Gene Array Project (Morgello et al., 2001; Gelman et al., 2012).  Briefly, the array 

project consists of four groups of subjects (HIV-negative, n=6; HIV-positive, n=6; HIV-positive 

with neurocognitive impairment, n=7; and HIV-positive with combined neurocognitive 

impairment and HIV encephalitis (HIVE), n=5) with samples taken from three brain regions 

(frontal lobe white matter, frontal cortex, and basal ganglia).  Further details on the subject 

demographics, neurocognitive diagnoses, and impairment scores, as well as background 

information on the Gene Array Project itself can be found at http://www.nntc.org/gene-array-

project.  Details on the brain regions and numbers of individual samples analyzed for each HIV 

group in this study are summarized in Table 1 and have been previously described in published 

supplementary material (Dever et al., 2012). 

 

Microarray data analysis  

CEL files for arrays were retrieved from the NCBI Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo/), GEO accession number GSE35864 (Gelman et al., 2012), 

and were reanalyzed as described previously (Dever et al., 2014).  Briefly, robust multi-array 

average (RMA) analysis for probe intensity data normalization and multi-class linear models for 

microarray data (limma) analysis to access differential expression between subject groups were 

performed for each brain region (Dever et al., 2014).  Heat maps were constructed from RMA 
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signal intensities using MultiExperiment Viewer 4.8 (http://www.tm4.org/mev.html) (Saeed et 

al., 2003; 2006). 

 

qRT-PCR  

Total RNA was isolated using the miRNeasy Mini Kit (Qiagen, Inc.; Valencia, CA, 

USA) and used to generate cDNA templates by reverse transcription of 1 µg RNA using the 

High Capacity cDNA Reverse Transcription Kit (Applied Biosystems; Carlsbad, CA, USA) 

according to the manufacturer's instructions.  PCR reactions were performed in a total volume of 

20 µL containing SensiMix SYBR qPCR reagents (Bioline USA, Inc.; Tauton, MA, USA) using 

a Corbett Rotor-Gene 6000 real-time PCR system (Qiagen, Inc.).  PCR conditions consisted of 

an initial hold step at 95°C for 10 min followed by 40 amplification cycles of 95°C for 10 s, 

58°C for 30 s, and 72°C for 30 s.  Sequences of the primer sets used were forward: 5'- 

CTCACCATGAACCAGACACA -3' and reverse: 5'- GACAGACCCGTTGAAAGCTA -3' for 

P2X4; forward: 5'- TTACAGCTGGAAACGGAGTG -3' and reverse: 5'- 

GTCCATCACATTGCTTTTGG -3' for P2X5; forward: 5'- CTGTGAAGTCTCTGCCTGGT -3' 

and reverse: 5'- GGGACACTGTGGATTCTGAG -3' for P2X7; and forward: 5'- 

GCTGCGGTAATCATGAGGATAAGA -3' and reverse: 5'- 

TGAGCACAAGGCCTTCTAACCTTA -3' for TATA-binding protein (TBP).  The specificity of 

the amplified products was verified by melting curve analysis and agarose gel electrophoresis.  

Melting curve analysis was perferfromed after PCR reaction completes to help confirm there was 

no contamination from mispriming, primer dimers, etc.  The melting temperature is dependent on 

the PCR product’s base composition.  Accordingly, PCR products from a particular primer set 
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should have the same melting temperature.  qRT-PCR data were calculated as relative expression 

levels by normalization to TBP mRNA using the 2−ΔΔCt method (Livak and Schmittgen, 2001).  

Samples from different brain regions were analyzed together for each subject group as performed 

previously due to the limited availability of tissue (Dever et al., 2012).   

 

Immunohistochemistry  

Frozen white matter samples from the NNTC Gene Array Project subjects were sectioned 

and fixed in 4% paraformaldehyde, permeabilized with 0.1% Triton X-100/0.1% bovine serum 

albumin (BSA), and blocked in 0.1% BSA/1% normal goat serum.  Primary antibodies used 

were anti-P2X4R (catalog number APR-002) at a 1:200 dilution and anti-P2X7R (catalog number 

APR-004) at a 1:100 dilution from Alomone Labs (Jerusalem, Israel), and anti-Iba-1 (Abcam, 

Inc.; Cambridge, MA, USA; catalog number ab5076) at a 1:100 dilution.  Immunoreactivity was 

visualized with appropriate secondary antibodies conjugated to Alexa Fluor 488 or 594 dyes 

(Molecular Probes; Eugene, OR, USA) used at a 1:200 dilution.  Sections were counterstained 

with Hoechst 33342 to label cell nuclei.  Samples were imaged using a Zeiss LSM 700 laser 

scanning confocal microscope equipped with a 63x oil immersion objective.  Images were 

collected by use of the z-stack acquisition mode in ZEN 2009 Light Edition software (Carl Zeiss, 

Inc.; Thornwood, NY, USA), that was set to move through the z-plane in 5 µm increments 

covering a total of 20 µm.  Z-stack images were later reconstructed and edited using Adobe 

Photoshop CS3 Extended 10.0 software (Adobe Systems, Inc.; San Jose, CA, USA). 
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Statistics 

qRT-PCR data were analyzed by one-way ANOVA with Student Neuman-Keuls post-

hoc test using GraphPad Prism 5 (GraphPad Software, Inc.; La Jolla, CA, USA) and are 

presented as the mean ± the standard error of the mean (SEM).  A value of p<0.05 was 

considered significant. 
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Results  
 

Though we were initially prompted by findings suggesting P2X4R and P2X7R can affect 

neuronal survival in vitro (Sorrell and Hauser, 2014), we also wanted to systematically explore 

the P2XR system more globally.  To begin to examine P2X4R and P2X7R, as well as other P2X 

family members that might play a role in human HIV-1 neuropathogenesis, microarray data was 

retrieved and reanalyzed to examine P2X1-7 subunit expression from subjects included in the 

National NeuroAIDS Tissue Consortium (NNTC) Gene Array Project (Gelman et al., 2012).  

Heat maps were generated displaying the expression pattern within individual P2X gene 

probesets included in the arrays for each subject in the four HIV groups across the three brain 

regions examined: the frontal lobe white matter, frontal cortex, and basal ganglia (Fig. 30a-c).  

Analysis of the microarray data showed a significant regulation of P2X7 and P2X5 subunit 

expression in the frontal cortex, as well as for P2X7 subunit levels in the basal ganglia, when all 

the subject groups were compared, although this analysis did not reveal significant pair-wise 

differences between any two particular groups.   

Accordingly, we further examined variations in P2X5 and P2X7 expression levels in the 

array data (Fig. 30d-f), and found a similar pattern of P2X7 expression across the subject groups 

in the frontal cortex and basal ganglia. Lastly, it is also important to mention that our analysis 

does not allow for inter-brain region comparisons of expression levels for a particular gene as 

samples from each brain region were normalized and summarized separately.   
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Figure 30. P2X family member expression across HIV-infected subjects with varying levels 
of neurocognitive impairment (a-f).  Heat maps are shown for P2X1-7 from the frontal lobe 
white matter (a), frontal cortex (b), and basal ganglia (c) of subjects that were HIV-negative (A1-
A6), HIV-positive (B1-B6), HIV-positive with neurocognitive impairment (C1-C7), and HIV-
positive with combined neurocognitive impairment and HIV encephalitis (HIVE) (D1-D5).  
Individual probesets included in the array for each P2X gene are given in parenthesis.  Mean ± 
SEM of robust multi-array average (RMA) signal intensity values for P2X5 and P2X7  expression 
in the white matter (d), frontal cortex (e), and basal ganglia (f). Data generation by Megan 
O’Brien and Blair Costin, figure generated by Sylvia Fitting) 
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Based on the preliminary microarray data, there was obvious utility in validating changes 

in P2X5 and P2X7 mRNA expression levels.  We also decided to further assess P2X4 transcript 

levels based on our recent findings (Sorrell and Hauser, 2014), as well as evidence from the 

literature.  P2X4Rs have previously been shown to be involved in neuroinflammation and 

cytokine production (Donnelly-Roberts and Jarvis, 2007; Kawano et al., 2012b; Sakaki et al., 

2013), as well as CNS disorders associated with excessive inflammation such as neuropathic 

pain, allodynia, and traumatic brain injury (Nasu-Tada et al., 2006; Ulmann et al., 2008; Beggs 

and Salter, 2013).  As inflammation is a defining characteristic of HIVE, we reasoned that 

P2X4Rs might also be involved in HIV-1 neuropathogenesis.  To test this hypothesis, we 

evaluated the expression levels of P2X4, along with P2X5 and P2X7, using qRT-PCR, and 

examined the pattern of P2X4R and P2X7R expression on cells by performing 

immunohistochemistry.  Only a subset of the brain tissue samples used in the Gene Array Project 

were available for this purpose from the NNTC (Table 2) (Dever et al., 2012).  We used the 

entire subset available in order to perform qRT-PCR and used representative samples to perform 

immunohistochemistry.  Samples from different brain regions were pooled to perform qRT-PCR 

analysis. 

Table 2.  Regional distribution of brain tissue samples used for qRT-PCR.  

Brain region             HIV(-)      HIV(+)       HIV(+)-Impaired       HIV(+)-HIVE 

Frontal lobe white matter 3 2 3 1 
Combined frontal lobe 
white matter/frontal cortex 

2 2 2 2 

Frontal cortex 1 3 4 2 
Basal ganglia 0 0 1 0 
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Although P2X4 and P2X5 mRNA expression levels were unaffected (Fig. 31a and b), we 

found that P2X7 expression was significantly elevated in subjects with HIVE compared to 

uninfected subjects (Fig. 31c).   
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Figure 31. P2X7 but not P2X4 and P2X5 mRNA expression levels are elevated in HIV-
infected subjects with combined neurocognitive impairment and HIVE (a-c).  P2X4 (a), 
P2X5 (b), and P2X7 (c) expression was measured by qRT-PCR across the indicated groups of 
subjects.  Error bars show the SEM. A one-way ANOVA was performed with Student Neuman-
Keuls post-hoc test. P2X4: F(3,24)=1.61, p=0.21; P2X5: F(3,24)=2.63, p=0.07; and P2X7: 
F(3,24)=3.05, p=0.048; *p<0.05 when HIV-negative and HIVE groups were compared for P2X7.  
Data generated by Seth Dever. 
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Immunohistochemistry was used to determine the cellular location of P2X4 and P2X7 

subunit expression in brain sections that were from representative samples of the white matter 

examined in the qRT-PCR analysis.  P2X7 subunit expression was found to co-localize on mostly 

Iba-1-positive microglial cells, whereas P2X4 subunit expression was seen in Iba-1-positive cells, 

as well as other cell types in sections from both uninfected and HIVE subjects (Fig. 23a-d).  

Confirmation of P2X subunit protein expression on Iba-1-positive cells supports the hypothesis 

that microglial P2XR activation may lead to neuroinflammatory signaling in neuroAIDS patients, 

although in the case of P2X4R, inflammatory actions via activation on other cell types cannot be 

ruled out.  Quantification of P2X protein levels in tissue samples from these groups of 

individuals will be useful for future studies to further confirm our qRT-PCR findings.  However, 

we were not able to perform this analysis due to limited amount of brain tissue available to us.  

Finally, greater numbers of Iba-1-immunoreactive, activated macrophages/monocytes and 

microglia appeared to be present in sections from HIVE-positive individuals (Fig. 23b,d), which 

is in alignment with what has been shown in previous studies (Glass et al., 1993; Langford and 

Masliah, 2001). 
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Figure 32.  P2X4 and P2X7 subunit antigenicity in uninfected and HIVE-positive human 
brain tissue.  P2X4 (green) immunoreactivity in tissue sections from uninfected (a) and 
cognitively impaired/HIVE-positive (b) individuals; P2X7 (green) immunofluorescent tissue 
from uninfected (c) and cognitively impaired/HIVE-positive (d) patients.  Arrows denote 
microglia, which were labeled with the cell type-specific marker Iba-1 (red).  Cell nuclei are 
counterstained with Hoechst dye (blue).  Scale bar = 10 µm.  Representative images are from 
frontal lobe white matter. All sections were cut 5 µm in thickness. 
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Discussion 
 
 

Overall, human tissue studies give evidence that the P2X receptor family may play a role 

in NeuroAIDS.  Unfortunately, we were unable to investigate the effects of opiates in HIV 

infected individuals.  It is very hard to investigate the effects of a single drug in human studies 

due to the fact the most people are poly drug abusers and/or fail to accurately report drug usage.  

Also there is no group of patients from the NNTC that are substance abusers but HIV negative to 

serve as a control group.  Aside from variable drug use, there are also several other factors to 

additionally take into account in human studies, such as differences in post mortem time 

intervals, different genetics associated with ethnicities and individuals, sex differences, as well 

differences in environment that may change protein expression and function at a regulatory level.  

Subjects were mostly male, middle-aged Caucasians who were enrolled at various locations 

across the country, with a wide variance in post mortem intervals (anywhere from 6-20 hours on 

average) (Gelman et al., 2012). The current study would greatly benefit from increased numbers 

of samples as well as more samples that better represent the populations as a whole. 

Furthermore, how the data is analyzed may also effect possible interpretations.  For example, in 

contrast to the limma (parametric) analysis used in the present study, prior analysis of the same 

microarrays using local-pooled-error (nonparametric) tests for statistical comparisons (Gelman et 

al., 2012) did find a significant difference in P2X7 expression levels within the basal ganglia 

when uninfected (Group A) and  HIVE (Group D) individuals were compared.   

  RT-PCR results suggest that among the P2X1-7Rs, expression of the P2X7R subtype may 

be differentially regulated during the HIV disease process in the CNS, and that increases in P2X7 

subunit transcripts are associated more with encephalitis than with neurocognitive impairment.  

Greater sample sizes are necessary to fully confirm or deny these assertions.  Moreover, the 
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P2X7 mRNA increases may underestimate the actual changes since the number of white matter 

samples available from HIV(+)-HIVE individuals was lower than that from uninfected (HIV(-)) 

patients (Table 2). Samples from different brain regions were pooled in this analysis, so data 

does not account for differences based on brain region.  

Despite the lack of changes in P2X4 mRNA expression levels, P2X4R function may still 

be indirectly constrained by changes in P2X7 transcripts, since P2X4R activation enhances 

P2X7R inflammatory activities and the co-expression of these receptors on microglia is required 

for full P2X7R function (Kawano et al., 2012a; 2012b).  A possible role for P2X5R is less clear 

based on the current limited understanding of this receptor subtype.  

Large amounts of ATP can be released extracellularly in situations involving neuronal 

injury, such as ischemia and spinal cord injury (Jurányi et al., 1999; Wang et al., 2004; Davalos 

et al., 2005; Melani et al., 2005).  Extracellular ATP levels are markedly elevated in primary 

murine neuron and glia co-cultures following treatment with HIV-1 Tat (Sorrell and Hauser, 

2014), and exposure to supernatants from HIV-1-infected human monocytes (Tovar-Y-Romo et 

al., 2013).  Assuming excessive extracellular ATP occurs in HIVE or HAND, the elevated levels 

are likely to further activate P2XRs contributing to cellular inflammation and/or injury.  

Moreover, since both extracellular ATP and P2XR levels appear to be affected, it is likely that 

purinergic signaling is widely disrupted in neuroAIDS.  Since the response of individual P2X 

subtypes to HIV may differ with cognitive status and the presence of encephalitis, the disruptions 

to purinergic receptor signaling appear to be highly complex.  Lastly, P2XRs reportedly can also 

mediate their effects by modulating the function of other receptors such as NMDA and GABA 

(Pankratov et al., 2002; Gordon et al., 2005; Pankratov et al., 2009; Tai et al., 2010; Baxter et al., 

2011).  
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Previous results, shown in Chapter 2, found P2X7R activation by the selective agonist 

BzATP to be intrinsically neurotoxic (Sorrell and Hauser, 2014), suggesting that the increases in 

P2X7 expression levels during HIVE in the human CNS described here might contribute to these 

effects.  Despite these findings, we are guarded in this interpretation, because in the same study 

HIV-1 Tat-induced neurotoxicity in neuron and glia co-cultures was unaffected by P2X7R 

blockade (Sorrell and Hauser, 2014).  However, HIV-associated neuroinflammation in humans 

occurs over many years and with multiple viral and cellular toxins. Thus, signaling pathways that 

are activated later during the disease process are not the same signaling pathways that respond to 

the initial infection and increases in HIV-1 proteins. The preliminary events following infection 

may be better modeled by primary murine culture systems.  Emerging evidence in studies of 

spinal cord injury (Wang et al., 2004), ischemic injury (Arbeloa et al., 2012), and 

neuroinflammation (Weisman et al., 2012a) also suggest that P2X7R blockade may be involved 

in anti-inflammatory and neuroprotective events.  Nevertheless, there is hesitancy to conclude 

that P2X7R signaling is causative rather than merely correlative in HIV-1 neuropathogenesis 

without additional studies in vivo, using infectious models, or following exposure to other HIV-1 

proteins such as gp120. 

Overall, our results suggest an as yet undefined role for P2X family members in HIV 

disease progression, and particularly for P2X7R in patients with HIVE.  Accordingly, 

pharmacotherapies directed against the P2X family, including potentially P2X7R antagonists, 

may help to ameliorate HIV-associated neuroinflammation and/or neuronal injury in HIVE-

positive patients.  
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Chapter 6: Conclusions and Future Directions 
 
 

The role of P2X receptor involvement in HIV and opioid interactions has been 

investigated in a wide range of different in vitro and in vivo assays, with focus on the role of 

P2X4 receptor involvement.  Finally, we were able to obtain human tissue samples to probe for 

possible P2X and HIV interactions, although we could not investigate opioid interactions in this 

model. Data from using pharmacological tools in murine primary cell co-culture models gave 

strong evidence for the necessity of activation of P2X receptors in order for Tat or morphine 

associated neurotoxicity to occur, and circumstantial evidence for actions occurring at the P2X4 

receptor (Chapter 2).  Using a similar primary cell co-culture model but using cells from P2X4 

KO mice instead of pharmacological tools, confirmed that activation of P2X4 receptors on glia in 

particular are critical in Tat and morphine associated neurotoxicity.  However, a yet undefined 

role for the receptor on neurons was implicated, where neuronal receptors may actually be 

neuroprotective (Chapter 3).  Next we looked at P2X4 actions in the whole animal, again via the 

use of P2X4 KO animals.  Behavior data showed little significance and did not support our 

hypothesis, however, signs of striatal inflammation due to the treatment of morphine and/or Tat 

were observed (Chapter 4).  Finally, tissue from human subjects implies the P2X receptor system 

is involved in NeuroAIDS, however no evidence for the P2X4 receptor involvement in particular 

was noted (Chapter 5).  Overall the P2X receptor system seems to play an important yet complex 

role in HIV and opioid interactions, with murine model evidence implicating P2X4 receptors on 

glia in particular.  

 

 Based on the results presented herein, our working hypothesis is that after initial insult 

due to HIV infection, which involves the release of toxic HIV proteins like Tat, ATP release 
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occurs.  Although the exact source of extracellular ATP is not investigated here, ATP can be 

released by neurons and astrocytes, as well as by damaged or dead cells (see discussion in 

Chapter 1).  Extracellular ATP then can activate P2X4 receptors on glia in the striatum. This then 

leads to abnormal control of [Ca2+]i, decreases in dendrite length, and ultimately increased 

neuronal death.      

Experiments using TNP-ATP in Chapter 2 confirm activation of the P2X receptor family 

is occurring due Tat and/or morphine treatment and blockade of P2X receptors prevent Tat and 

morphine associated neurotoxicity in multiple assays.  Studies using selective antagonists for the 

P2X1, P2X3, and P2X7 subunits plus evidence from the literature circumstantially strengthen the 

case for P2X4 subunit involvement.  Finally use of glia from P2X4 KO animals in primary cell 

culture experiments and comparison of inflammatory markers in the striatum of WT verses KO 

animals that received intrastriatal Tat injections and/or morphine pellets point to the activation of 

P2X4 receptors on glia leading to increases in inflammation in the striatum as a result of Tat 

and/or morphine.  However, in vitro experiments that involved neurons from P2X4 KO mice give 

rise to a more complex hypothesis involving possible baseline change in neuron function due to 

knockout of the P2X4 receptor, and evidence for the activation of different signaling pathways 

depending on whether Tat or morphine are given alone as compared to when they are given in 

combination. Data from behavioral tasks also imply there may be differences in baseline function 

between KO and WT animals, as well as gave evidence that P2X4 receptors in other areas of the 

brain and body may be involved in a more complex role of overall homeostasis in the animal.  

Behavior data supports the theory that Tat and morphine treatment in combination verses when 

compounds are given alone may activate different cellular signaling pathways.  In general, it also 

supports themes that were suggested in Chapter 3 in response to data generated with neurons 
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from P2X4 KO mice, that specific pools of P2X4 receptors may in fact play a significant role in 

Tat and morphine related neurotoxicity, however when global P2X4 receptor function is assessed, 

it appears to affect multiple functions that are important to the overall function of the animal and 

how it may respond to Tat and morphine exposure. 

Our work suggests selective antagonism of the P2X4 receptor may be a useful target in 

the clinic to treat symptoms associated with neuroAIDS.  However, there are currently no 

selective agonists/antagonists for the P2X4 receptor, as such targeting proteins that participate in 

signaling downstream of receptor activation may be another option.  Furthermore, since the 

receptor may elicit different signaling pathways based on cell location, it may be of benefit to 

target downstream targets that are cell type specific.  The present work supports signaling 

associated with P2X4 receptors on microglia as the most promising target.    

Further experiments are needed to investigate downstream signaling events associated 

with P2X4 receptor activation induced by Tat and/or morphine treatment. However, several 

pathways have been identified in microglia P2X4 signaling in response to other 

stimuli/conditions, including MAPK/ERK and PI3/Akt pathways (Fig. 33).  Tat and morphine 

can also activate these same pathways, making them potential points of convergence (D'Aversa 

et al., 2004; Hauser et al., 2006; King et al., 2006b). Looking at other points of convergence such 

as changes in cytokine and chemokine level changes due to Tat and morphine treatment would 

also help to uncover P2X4 downstream signaling pathways.       
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Figure 33. Speculative molecular mechanisms in microglia.   MOR activation can lead to up-
regulation of P2X4 receptors on the cell surface (Horvath and DeLeo, 2009).  These receptors 
can undergo trafficking from lysosomal vesicles due to multiple factors.  After receptor 
undergoes activation, subsequent Ca2+ flux occurs, which leads to MAPK/ERK and PI3/Akt 
pathway activation.  MAPK/ERK pathway activation has been linked to BDNF and 
chemokine/cytokine release.  PI3K/Akt pathway activation has been linked to increases 
microglia migration (Horvath and DeLeo, 2009; Trang et al., 2009; Beggs and Salter, 2013).  
Ca2+ can lead to MAPK/ERK activation via activation of proline-rich tyrosine kinase 2 (PYK2), 
which then acts through the small GTPase Ras to induce the MAPK cascade (Lev et al., 1995; 
Berridge et al., 2003).  Ca2+ can alter PI3K/Akt activity through activation of protein 
phosphatases (Nakazawa et al., 2005). 
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  Unfortunately, we were unable to differentiate between the roles of P2X4 receptors 

located on microglia verses astrocytes in our co-culture model.  As mentioned in the methods 

section glia cultures contain about 10% microglia and 90% astrocytes.  The removal of microglia 

from astrocyte cultures can be very time consuming and the process itself can be harmful to the 

cells.  It is also hard to get pure microglial cultures without astrocytes present, as microglia do 

not survive well in isolation. This also complicates the ability of receptor silencing to be useful 

since it is hard to isolate either cell type.  Ideally, a model that expressed or knocked out the 

receptor based off a cell type specific promoter would greatly facilitate the ability to differentiate 

between functions occurring through astrocytes versus microglia. 

 

The use of conditional P2X4 KO mice that could be induced by something like 

doxycycline would be useful in determining whether baseline differences seen between WT and 

KO groups are due to developmental compensation or if the same effect would still occur if P2X4 

receptors levels were altered later in development.  Conditional KO animals that make use of the 

Cre/Lox technology would also be helpful to answer the question of what the lack of P2X4 

receptors in other areas of the brain aside from the striatum as well as in the periphery may be 

having on our Tat and morphine treatment paradigm.  However, they are several subpopulations 

of neurons in the striatum, which makes finding a particular promoter to target that would 

encompass all striatal neurons very difficult.  Additionally, targeting microglia or astrocytes in a 

particular brain region is also difficult, as their protein expression profile tends to be more 

homogeneous.  Crossbreeding of P2X KO animals with inducible Tat transgenic mice, may also 

be an improved model, as chronic Tat presence that is more evenly distributed may better 

correlate with what occurs in humans.   
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Another thing to keep in mind for these experiments is that morphine released from 

implanted pellets is released systemically and likely able to activate receptors throughout the 

animal, not just in the striatum. Tat may also have effects elsewhere, but due to injection directly 

into the striatum it is probably having most of its direct effects there. One idea may be to also 

inject morphine into the striatum but daily dosing over a 5-day period provides a technical 

challenge, as having to perform multiple surgeries on the animal would likely have significant 

affects of its own.  Insertion of an injection cannula may be able to minimize complications due 

to repeated injections.  Even in this situation changes in striatal projections may alter the function 

of other areas of the brain that may exhibit a changed response due to lack of P2X4 receptors 

being present.   

 

Another aspect to keep in mind with both our in vitro and in vivo murine models, is that 

seeing one dose of Tat over several days, is not going to be the same as in a human where the 

brain is getting insulted by Tat and other HIV proteins for years and only over time do 

individuals start to show symptoms.  However, it is impossible to study individual molecular 

pathways without looking at simpler systems.  Our model does show good concordance with 

signs that are associated with neuronal injury that are seen in humans, such as increased 

intracellular calcium levels and decreased dendritic length.  Also, the amount of neuronal death 

observed seems reasonable (around 30% with Tat and morphine treatment) to correlate with 

what may occur in humans.  Dysfunction in increasing but initially, small proportions of neurons 

in targeted areas is what eventually adds up to cause alterations in brain function over time.  

Finding appropriate models to study HIV interactions in the CNS is a challenge to everyone in 

the field, but we believe that elucidating initial inflammatory events is important to not only 
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finding treatments aimed at prevention of neurocognitive deficits, but for better early biomarkers 

that may be associated with NeuroAIDS.  However, we must also keep in mind the viral 

infection in humans over years or even decades may be much more complex than looking at a 

single HIV protein for a short duration due to single treatments in cell culture or whole animal 

models.   

 

As with Tat, treating with single doses, or time-released treatments over several days as 

was done in our studies, is not going to exactly replicate what humans would see with opiate 

abuse that occurs over years or possibly decades.  In both our in vitro and in vivo experiments, 

we use a higher dose of morphine, as opioid-dependent individuals can reportedly have very high 

opioid blood levels (Gurwell et al., 2001).  However, opiate abuse patterns can vary greatly 

among different individuals and furthermore interactions with other drugs are also likely to be a 

factor, as most humans are poly drug users.   

 

Another factor that affects Tat and morphine interactions in humans that are not 

addressed in our animal models is the genetic variability of an individual.  The current work 

focuses on possible new targets and biomarkers to help in the treatment of neuroAIDS related 

symptoms.   However, 50% of individuals will never see neurological complications, so it is 

apparent that these individual differences also play an important role.  While, we do not fully 

understand these differences, polymorphisms of different proteins can cause differences in HIV 

disease progression, with perhaps that most notable being a mutation in the CCR5 protein, where 

individuals that are exposed to HIV do not get infected (Huang et al., 1996), however there are 

also many other polymorphisms that can affect HIV disease progression (Fellay et al., 2007; 
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2009).  Polymorphisms in the µ opioid receptor and differences in splice variants may also play a 

role in HIV and opioid interactions (Dever et al., 2012; 2014).  

 

Another reason why some individuals may see neurocognitive symptoms and others do 

not is that an individual may respond differently based on genetic variation in the virus itself.  

Tat can differ in its amino acid structure with the different subtypes of the HIV virus, which can 

affect its transcriptional activity. We only used Tat made from HIV-1B subtype, so Tat from 

different HIV-1 subtypes may have yielded different results (Kurosu et al., 2002; Roof et al., 

2002; Desfosses et al., 2005).  Furthermore, differences in strain can also effect morphine’s 

interactions with the virus (El-Hage et al., 2011).     

 

In conclusion, both in vitro and in vivo experiments using both pharmacological and 

genetic manipulation provide strong evidence in support of our initial hypothesis that activation 

of P2X4 receptors on microglia cells is necessary in Tat and morphine striatal toxicity.  However, 

microglia and astrocyte function were not able to be assessed individually, and experiments 

involving neurons from P2X4 KO mice and assays assessing motor related behavior in P2X4 KO 

mice that were treated with Tat and/or morphine suggest a more complex model with the 

receptor having different effects depending on cell type and tissue location.  Although data from 

human tissue did not show a correlation between P2X4 mRNA levels and HIV progression in the 

CNS of humans, this does not exclude normal levels of P2X4 mRNA and presumably protein 

function from having a significant effect on symptoms caused by neuroAIDS.  Altogether, data 

suggests P2X4 receptors as promising new targets to prevent or treat neurocognitive symptoms 

associated with HIV, and that targeting a subpopulation of these receptors may provide the most 
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benefit. 
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